|
1.Fleissig, A., et al., Multidisciplinary teams in cancer care: are they effective in the UK? The lancet oncology, 2006. 7(11): p. 935-943. 2.Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 2015. 136(5): p. E359-E386. 3.Jemal, A., et al., Global cancer statistics. CA: a cancer journal for clinicians, 2011. 61(2): p. 69-90. 4.Cruz, J.A. and D.S. Wishart, Applications of machine learning in cancer prediction and prognosis. Cancer informatics, 2006. 2. 5.Kourou, K., et al., Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal, 2015. 13: p. 8-17. 6.Chiang, C.-J., et al., Cancer trends in Taiwan. Japanese journal of clinical oncology, 2010. 40(10): p. 897-904. 7.Caliendo, M. and S. Kopeinig, Some practical guidance for the implementation of propensity score matching. Journal of economic surveys, 2008. 22(1): p. 31-72. 8., D., Regression Models and Life-Tables. Journal of, 1972. 9.Grambsch, P.M. and T.M. Therneau, Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 1994. 81(3): p. 515-526. 10.Buuren, S. and K. Groothuis-Oudshoorn, mice: Multivariate imputation by chained equations in R. Journal of statistical software, 2011. 45(3). 11.White, I.R., P. Royston, and A.M. Wood, Multiple imputation using chained equations: issues and guidance for practice. Statistics in medicine, 2011. 30(4): p. 377-399. 12.Chawla, N.V., et al., SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357. 13.Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. in Ijcai. 1995. 14.Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32. 15.Chen, C., A. Liaw, and L. Breiman, Using random forest to learn imbalanced data. University of California, Berkeley, 2004: p. 1-12. 16.Segal, M.R., Machine learning benchmarks and random forest regression. Center for Bioinformatics & Molecular Biostatistics, 2004. 17.Breiman, L., et al., Classification and regression trees. 1984: CRC press. 18.Breiman, L., Bagging predictors. Machine learning, 1996. 24(2): p. 123-140. 19.Wolpert, D.H. and W.G. Macready, An efficient method to estimate bagging''s generalization error. Machine Learning, 1999. 35(1): p. 41-55. 20.Tibshirani, R., Bias, variance and prediction error for classification rules. 1996: Citeseer. 21.Bergstra, J.S., et al. Algorithms for hyper-parameter optimization. in Advances in Neural Information Processing Systems. 2011. 22.Bergstra, J. and Y. Bengio, Random search for hyper-parameter optimization. Journal of Machine Learning Research, 2012. 13(Feb): p. 281-305.
|