跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 17:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳凱文
研究生(外文):Kai-Wen Wu
論文名稱:利用雷射產生之漏溢聲波進行組織檢查時之針定位
論文名稱(外文):Laser Generated Leaky Acoustic Waves for Visualization during Needle Biopsy
指導教授:李百祺
指導教授(外文):Pai-Chi LI
口試委員:郭柏齡劉建宏廖愛禾沈哲州
口試委員(外文):Po-Ling KuoJian-Hung LiuAi-Ho LiaoChe-Chou Shen
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:漏溢聲波雷射誘發導波影像導引切片檢查
外文關鍵詞:leaky acoustic wavelaser-induced guided waveimage-guided biopsy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超音波影像在目前已經廣泛地被醫師們使用於手術中對於針的輔助導引,由於超音波影像的優勢,使得操作者能夠同時藉由即時影像了解組織的解剖資訊及針在組織中相對應位置。然而由於超音波在針表面的鏡面反射作用會大大限制住超音波探頭與針之間的夾角關係,進而限制手術的靈活自由度。因此本論文提出一種全新利用雷射誘發漏溢聲波的針定位方式,其主要定位原理是基於超音波導波以及其在周圍介質中所產生之漏溢聲波的物理傳播特性。我們利用雷射聚焦在針身的頂部位置以在針表面產生超音波導波,當超音波導波在傳播時同時會洩漏部分能量到周圍產生漏溢聲波,我們便能利用超音波探頭去接收漏溢聲波並去做後續定位計算。在我們的實驗中,我們將26G的不鏽鋼針分別插入塑膠仿體以及豬肉組織中去做定位測試,結果顯示我們的漏溢聲波定位方法能夠在豬肉組織中做到50 mm的定位深度,並且最大的針插入角度能夠到達40°,顯示本方法優於現有的超音波與光聲方法。

Ultrasound (US)-guided needle operations have been widely used to visualize both tissue anatomical structures and needle position in real time. However, the US transducer-needle angle is often limited due to specular reflection from the needle surface. We propose a new needle visualization method based on laser-induced leaky acoustic waves. The needle angle and position are calculated based on characteristics of guided waves and leaky acoustic waves. In our approach, the top of the needle shaft is illuminated by laser and guided acoustic waves are subsequently generated, propagating along the needle and leak to the surrounding medium that can be detected by the US transducer. This method was tested with a 26-gauge needle in both a tissue mimicking phantom and porcine muscle tissue. Results show that the detection depth is more than 50 mm and the insertion angle is up to 40°, both are superior than existing ultrasound and photoacoustic methods.

誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 超音波穿刺導引 3
1.3 光聲輔助超音波穿刺導引 7
1.4 研究目標 11
第二章 超音波導波與漏溢聲波 12
2.1 超音波導波 12
2.1.1超音波導波 12
2.1.2 管柱超音波導波 14
2.2 漏溢聲波 21
2.3 光聲方式產生超音波導波 23
第三章 實驗方法與實驗架構 25
3.1 超音波導波與漏溢聲波用於定位針方法 25
3.2 超音波導波速度量測方法 29
3.3 實驗架構 31
第四章 實驗結果與討論 34
4.1 超音波導波速度量測 34
4.2 塑膠仿體結果 36
4.3 豬肉離體實驗結果 38
4.4 導波速度校正誤差影響討論 40
4.5 定位角度限制討論與比較 43
4.6 影像深度限制與光轉換效率討論比較 48
4.7 漏溢聲波頻譜分析 50
4.8 漏溢聲波雷射選擇 52
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
5.2.1 牙齒導波 54
5.2.2聚焦漏溢聲波 57
參考文獻 59



1.Sites, B.D. and J.G. Antonakakis, Ultrasound guidance in regional anesthesia: state of the art review through challenging clinical scenarios. Local and regional anesthesia, 2009. 2: p. 1.
2.Kumar, A. and A. Chuan, Ultrasound guided vascular access: efficacy and safety. Best Practice & Research Clinical Anaesthesiology, 2009. 23(3): p. 299-311.
3.San Jose Gastroenterology. Available from: http://www.sjgi.com/image/livrBx.jpg.
4.Souzdalnitski, D., I. Lerman, and T.M. Halaszynski, How to improve needle visibility, in Atlas of ultrasound-guided procedures in interventional pain management. 2011, Springer. p. 35-75.
5.Emergency Ultrasonography. Available from: http://www.emergencyultrasoundteaching.com/image_galleries/physics_images/index.php.
6.Chin, K.J., et al., Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions. Regional anesthesia and pain medicine, 2008. 33(6): p. 532-544.
7.Su, J., et al., Photoacoustic imaging of clinical metal needles in tissue. Journal of biomedical optics, 2010. 15(2): p. 021309-021309-6.
8.Kim, C., et al., Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. Journal of biomedical optics, 2010. 15(4): p. 046010-046010-4.
9.Kim, C., et al. Photoacoustic image-guided needle biopsy of sentinel lymph nodes. in SPIE BiOS. 2011. International Society for Optics and Photonics.
10.Wei, C.-w., et al. Clinically translatable ultrasound/photoacoustic imaging for real-time needle biopsy guidance. in 2014 IEEE International Ultrasonics Symposium. 2014. IEEE.
11.Nishino, H., et al., Modal analysis of hollow cylindrical guided waves and applications. Japanese Journal of Applied Physics, 2001. 40(1R): p. 364.
12.Murray, T.W., K.C. Baldwin, and J.W. Wagner, Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution. The Journal of the Acoustical Society of America, 1997. 102(5): p. 2742-2746.
13.Kim, H., et al., A noncontact NDE method using a laser generated focused-Lamb wave with enhanced defect-detection ability and spatial resolution. Ndt & E International, 2006. 39(4): p. 312-319.
14.Paul A. Meyer, P.D.a.J.L.R. Guided Wave Applications of Piezocomposite Transducers. Available from: http://www.ndt.net/article/meyer2/meyer2.htm.
15.Guided Wave Testing Available from: https://guidedwavetesting.com/guided_wave_testing.html.
16.GUIDEDWAVE. Available from: http://www.gwultrasonics.com/knowledge/pipe/.
17.Simonetti, F. A guided wave technique for needle biopsy under ultrasound guidance. in SPIE Medical Imaging. 2009. International Society for Optics and Photonics.
18.Wilcox, P., M. Lowe, and P. Cawley, Mode and transducer selection for long range Lamb wave inspection. Journal of intelligent material systems and structures, 2001. 12(8): p. 553-565.
19.Silk, M. and K. Bainton, The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics, 1979. 17(1): p. 11-19.
20.Esenaliev, R.O., A.A. Karabutov, and A.A. Oraevsky, Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999. 5(4): p. 981-988.
21.Scruby, C.B. and L.E. Drain, Laser ultrasonics techniques and applications. 1990: CRC Press.
22.Huke, P., et al., Efficient laser generation of Lamb waves. Optics letters, 2014. 39(20): p. 5795-5797.
23.Institute, A.N.S., American National Standard for Safe Use of Lasers. 2007: Laser Institute of America.
24.Ta, D., et al., Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound in medicine & biology, 2009. 35(4): p. 641-652.
25.Moilanen, P., Ultrasonic guided waves in bone. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008. 55(6): p. 1277-1286.
26.Langley Endodontics. Available from: http://langleyendodontics.ca/wp-content/uploads/2012/10/tooth-cracked.jpeg.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top