跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林欣承
研究生(外文):Hsin-Chen Lin
論文名稱:受缺氧所誘發的NDRG1-OT1_v4於乳癌MCF-7細胞中藉由泛素化調控路徑而促使NDRG1降解
論文名稱(外文):The Hypoxic Responsive NDRG-OT1_v4 Promotes NDRG1 Degradation via Ubiquitin-Mediated Proteolysis in Breast Cancer MCF-7 Cells
指導教授:賴亮全賴亮全引用關係
口試委員:蔡孟勳莊曜宇佘玉萍
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:40
中文關鍵詞:缺氧復氧長鏈非編碼核糖核酸NDRG1-OT1NDRG1泛素化
外文關鍵詞:HypoxiaRe-oxygenationlncRNANDRG1-OT1NDRG1Ubiquitination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
缺氧為固態癌症細胞中常見且重要的壓力因子,其可藉由調控諸多細胞內訊息傳遞路徑使細胞更加惡化。長鏈非編碼核糖核酸(long non-coding RNA; lncRNA)最近被發現在癌症細胞中扮演著重要的角色,其可藉由調節諸多基因表現的過程,使癌症細胞回應外在環境的刺激而造成細胞功能上的變化。然而,在乳癌細胞中是否有受外在氧氣濃度變化而影響表現的lncRNA還尚未釐清,因此本次研究目的即在探討乳癌細胞株MCF-7中受氧氣控制的lncRNA,並研究其相關機轉。為了尋找受氧氣控制的lncRNA,本實驗室使用高通量次世代定序(next generation sequencing)的技術來找尋。本實驗室所建立篩選受氧氣調控的lncRNA條件為從常氧到缺氧以及從缺氧回到復氧的狀態下表現量倍數大於3倍以及有顯著差異(P值<0.001),而最後發現了472條受氧氣濃度變化而有反應的lncRNA。從受缺氧而誘發的5條倍數差異最高的lncRNA中,NDRG1-OT1被選中作為接下來的研究對象。而NDRG1-OT1的5個亞型中,第4號亞型在缺氧環境下的表現量差異最高,因此第4號亞型NDRG1-OT1(NDRG1-OT1_v4)作為接下來進一部探討的實驗對象。為了尋找NDRG1-OT1_v4調控的下游基因與可能參與的調控路徑,本實驗室於細胞中大量表現NDRG1-OT1_v4,並使用基因微陣列(microarray)的技術。本實驗室找到了108個受NDRG1-OT1_v4所調控的基因,而在5個表現差異最高的基因中,又以NDRG1表現量差異最為明顯。根據即時定量聚合酶連鎖反應(real-time polymerase chain reaction)以及西方點墨法的驗證,證明NDRG1-OT1_v4抑制NDRG1之mRNA與蛋白質的表現。接著本實驗使用了免疫沉澱法的方式,成功證明NDRG1-OT1_v4可藉由增加NDRG1的泛素化,促進NDRG1的降解,進而減少NDRG1蛋白質的表現。本次的實驗研究成功地在乳癌細胞中找到了新的表觀遺傳調控NDRG1的方式。

Hypoxia is a crucial factor that can lead to solid tumor aggressiveness by driving multiple signaling pathways. Long non-coding RNAs (lncRNAs) respond to several extrinsic stimuli, causing changes in cancer function by participating in multiple steps of gene expression. However, it is unclear whether lncRNAs respond to oxygen concentrations in breast cancer. Therefore, the aims of this study are to identify oxygen responsive lncRNAs, and to delineate their regulatory mechanisms in breast cancer MCF-7 cells. The expression profiling of lncRNAs in MCF-7 cells growing under normoxic, hypoxic, and re-oxygenated conditions was examined using next-generation sequencing technology. The criteria for selecting oxygen-responsive lncRNAs consisted of greater than 3-fold change, significant differences (P < 0.001), and opposite expression profiling between normoxia and hypoxia, as well as between hypoxia and re-oxygenation. Four hundred and seventy-two lncRNAs that met these rules were identified. Examining the top five differentially expressed lncRNAs in hypoxia, we selected NDRG1-OT1 for further study. Among the five isoforms of NDRG1-OT1, NDRG1-OT1_v4 was chosen for further investigation because it was the most responsive isoform to oxygen changes. We overexpressed NDRG1-OT1_v4 under normoxia and performed microarray analysis to identify 108 NDRG1-OT1_v4 regulated genes and their functions. Among these genes, we focused on the effect of NDRG1-OT1_v4 on NDRG1, and found that both NDRG1 mRNA and NDRG1 protein were inhibited by NDRG1-OT1_v4. Finally, we used co-immunoprecipitation and discovered that NDRG1-OT1_v4 destabilized NDRG1 by promoting ubiquitin-mediated proteolysis. Our findings revealed a new form of epigenetic regulation of NDRG1 by NDRG1-OT1_v4 in breast cancer.

致謝 I
摘要 III
Abstract V
List of Tables IX
List of Figures X
Chapter 1. Introduction 1
Hypoxia exacerbates aggressiveness of solid tumor 1
The function and regulatory mechanism of NDRG1 in cancer 2
Function and mechanism of long non coding RNA in cancer 3
The aim of this study 4
Chapter 2. Materials and Methods 5
Cell culture and treatments 5
Human lncRNA next-generation sequencing and analysis 5
Plasmid DNA construction and transfection 8
RNA extraction and quantitative real-time RT-PCR 8
Human genome microarray analysis 9
Protein extraction and western blot 10
Co-immunoprecipitation 11
Statistical analysis 12
Chapter 3. Results 13
Identification of lncRNA expression profile in different O2 conditions 13
NDRG1-OT1 was up-regulated during hypoxia and down-regulated during reoxygenation 15
Over-expression of NDRG1-OT1_v4 18
Identification of gene expression profile in MCF-7 cells over-expressing NDRG1-OT1_v4 19
NDRG1 mRNA and protein level was down-regulated by NDRG1-OT1_v4 21
NDRG1_OT1_v4 promote NDRG1 ubiquitination and degradation 23
Chapter 4. Discussion 26
The oxygen-responsive lncRNAs in different cancer cells 26
NDRG1-OT1 was chosen for this study 27
Signaling pathways regulated by NDRG1-OT1_v4 28
A novel epigenetic regulation of NDRG1 by NDRG1-OT1_v4 29
Limitations of this study 31
Summary and future works 32
References 33


1.Masson, N. and P.J. Ratcliffe, Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab, 2014. 2: p. 3.
2.Gulledge, C.J. and M.W. Dewhirst, Tumor oxygenation: a matter of supply and demand. Anticancer Res, 1996. 16: p. 741-9.
3.Curran, C.S. and P.J. Keely, Breast tumor and stromal cell responses to TGF-beta and hypoxia in matrix deposition. Matrix Biol, 2013. 32: p. 95-105.
4.Wang, F., et al., A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1alpha. Cancer Biol Ther, 2016. 7: p. 1-9.
5.Bae, K.M., et al., Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am J Cancer Res, 2016. 6: p. 1078-88.
6.Knowles, H.J. and A.L. Harris, Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res, 2001. 3: p. 318-22.
7.Jiang, Y., et al., The effect of silencing HIF-1alpha gene in BxPC-3 cell line on glycolysis-related gene expression, cell growth, invasion, and apoptosis. Nutr Cancer, 2015. 67: p. 1314-23.
8.da Motta, L.L., et al., The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene, 2016. 10: p. 13.
9.Volm, M. and R. Koomagi, Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res, 2000. 20: p. 1527-33.
10.Guan, Z., et al., HAF drives the switch of HIF-1alpha to HIF-2alpha by activating the NF-kappaB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol, 2014. 44: p. 393-402.
11.Liao, D., et al., Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res, 2007. 67: p. 563-72.
12.Mak, P., et al., ERbeta regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget, 2015. 6: p. 40247-54.
13.Yao, K.S., et al., Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT29 colon cancer cells to hypoxia. Mol Cell Biol, 1994. 14: p. 5997-6003.
14.Sodhi, A., et al., MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun, 2001. 287: p. 292-300.
15.Kurdistani, S.K., et al., Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res, 1998. 58: p. 4439-44.
16.Salnikow, K., et al., Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res, 2000. 60: p. 5630-4.
17.Salnikow, K., et al., The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol, 2002. 22: p. 1734-41.
18.Taketomi, Y., et al., Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochem Biophys Res Commun, 2003. 306: p. 339-46.
19.Piquemal, D., et al., Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochim Biophys Acta, 1999. 1450: p. 364-73.
20.Guan, R.J., et al., Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res, 2000. 60: p. 749-55.
21.Lee, J.C., et al., N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett, 2014. 355: p. 242-52.
22.Chang, X., et al., NDRG1 expression is related to the progression and prognosis of gastric cancer patients through modulating proliferation, invasion and cell cycle of gastric cancer cells. Mol Biol Rep, 2014. 41: p. 6215-23.
23.Wang, Q., et al., HIF-1alpha up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol Biol Rep, 2013. 40: p. 3723-9.
24.Li, E.Y., et al., Aryl Hydrocarbon Receptor Activates NDRG1 Transcription under Hypoxia in Breast Cancer Cells. Sci Rep, 2016. 6: p. 20808.
25.Broggini, T., et al., NDRG1 overexpressing gliomas are characterized by reduced tumor vascularization and resistance to antiangiogenic treatment. Cancer Lett, 2015. 20: p. 9.
26.Zhang, P., K.M. Tchou-Wong, and M. Costa, Egr-1 mediates hypoxia-inducible transcription of the NDRG1 gene through an overlapping Egr-1/Sp1 binding site in the promoter. Cancer Res, 2007. 67: p. 9125-33.
27.Li, Q. and H. Chen, Transcriptional silencing of N-Myc downstream-regulated gene 1 (NDRG1) in metastatic colon cancer cell line SW620. Clin Exp Metastasis, 2011. 28: p. 127-35.
28.Luo, E.C., et al., MicroRNA-769-3p Down-regulates NDRG1 and Enhances Apoptosis in MCF-7 Cells During Reoxygenation. Sci Rep, 2014. 4: p. 5908.
29.Luo, F., et al., A MALAT1/HIF-2alpha feedback loop contributes to arsenite carcinogenesis. Oncotarget, 2016. 7: p. 5769-87.
30.Zhang, A., et al., LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Rep, 2015. 13: p. 209-21.
31.Bhan, A. and S.S. Mandal, Estradiol-induced transcriptional regulation of long non-coding RNA, HOTAIR. Methods Mol Biol, 2016. 1366: p. 395-412.
32.Feldstein, O., et al., The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer, 2013. 12: p. 131.
33.Zhou, Z., et al., Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Sci Rep, 2015. 5: p. 15293.
34.Yang, F., et al., Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell, 2014. 53: p. 88-100.
35.Xue, M., et al., Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1alpha-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol, 2014. 35: p. 6901-12.
36.Voellenkle, C., et al., Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep, 2016. 6: p. 24141.
37.Xue, M., et al., Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci, 2016. 107: p. 18-27.
38.Ji, J., et al., LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget, 2015. 6: p. 42813-24.
39.Chou, J., et al., MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun, 2016. 472: p. 262-9.
40.Takayama, K., et al., Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J, 2013. 32: p. 1665-80.
41.Wang, Y., et al., Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting gamma-synuclein. Neoplasia, 2014. 16: p. 1094-106.
42.Xu, T.P., et al., SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene, 2015. 34: p. 5648-61.
43.Zhang, Z., et al., Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ, 2013. 20: p. 1558-68.
44.Cao, C., et al., The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology, 2015. 148: p. 415-26.e18.
45.Huang, J., et al., Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis, 2014. 5: p. e1008.
46.Yang, F., et al., Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell, 2013. 49: p. 1083-96.
47.Luo, F., et al., The lncRNA MALAT1, acting through HIF-1alpha stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta, 2016. 1862: p. 1685-1695.
48.Takahashi, K., et al., Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci, 2014. 127: p. 1585-94.
49.Beckedorff, F.C., et al., The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet, 2013. 9: p. e1003705.
50.Ogino, T., et al., Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother, 2012. 61: p. 409-24.
51.Yoon, G., C. Sik Oh, and H.S. Kim, Distinctive expression patterns of hypoxia-inducible factor-1alpha and endothelial nitric oxide synthase following hypergravity exposure. Oncotarget, 2016. 7: p. 33675-33688.
52.Chowdhury, A.R., et al., Mitochondrial stress-induced p53 attenuates HIF-1alpha activity by physical association and enhanced ubiquitination. Oncogene, 2016. 27: p. 13.
53.Verratti, V., et al., Sperm forward motility is negatively affected by short-term exposure to altitude hypoxia. Andrologia, 2016. 24: p. 7.
54.Cangul, H., Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet, 2004. 5: p. 27.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊