|
1.Brugada, P. and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol, 1992. 20(6): p. 1391-6. 2.Miyazaki, T., et al., Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. Journal of the American College of Cardiology, 1996. 27(5): p. 1061-1070. 3.Brugada, P., J. Brugada, and D. Roy, Brugada syndrome 1992-2012: 20 years of scientific excitement, and more. Eur Heart J, 2013. 34(47): p. 3610-5. 4.Chen, Q., et al., Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998. 392(6673): p. 293-296. 5.Vatta, M., et al., Novel mutations in domain I of SCN5A cause Brugada syndrome. Mol Genet Metab, 2002. 75(4): p. 317-24. 6.Cordeiro, J.M., et al., Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation, 2006. 114(19): p. 2026-33. 7.Casini, S., et al., Characterization of a novel SCN5A mutation associated with Brugada syndrome reveals involvement of DIIIS4-S5 linker in slow inactivation. Cardiovasc Res, 2007. 76(3): p. 418-29. 8.Pfahnl, A.E., et al., A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm, 2007. 4(1): p. 46-53. 9.Rook, M.B., et al., Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res, 1999. 44(3): p. 507-17. 10.Antzelevitch, C., et al., Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation, 2007. 115(4): p. 442-9. 11.Delpon, E., et al., Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol, 2008. 1(3): p. 209-18. 12.Benito, B., et al., Brugada syndrome. Rev Esp Cardiol, 2009. 62(11): p. 1297-315. 13.Juang, J.M., et al., Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep, 2014. 4: p. 6733. 14.Lim, C.X., et al., KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. Journal of Medical Genetics, 2016. 53(4): p. 217-225. 15.William J. Joiner, et al., Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature neuroscience, 1998. 1(6): p. 462-469. 16.Kameyama, M., et al., Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature, 1984. 309(5966): p. 354-356. 17.Mori, K., et al., Effects of class III antiarrhythmic drugs on the Na(+)-activated K+ channels in guinea-pig ventricular cells. British Journal of Pharmacology, 1996. 119(1): p. 133-141. 18.William J. J., et al., Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature neuroscience, 1998. 1(6): p. 462-469. 19.Kim, G.E. and L.K. Kaczmarek, Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci, 2014. 8: p. 209. 20.Barcia, G., et al., De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet, 2012. 44(11): p. 1255-9. 21.Moller, R.S., et al., Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia, 2015. 56(9): p. e114-20. 22.Huang, K. K., et al., SETD2 histone modifier loss in aggressive GI stromal tumours. Gut, 2015. 0: p. 1-13. 23.Bhattacharjee, A., et al., Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci, 2003. 23(37): p. 11681-91. 24.Zimmermann, P., The prevalence and significance of PDZ domain–phosphoinositide interactions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2006. 1761(8): p. 947-956. 25.Altschuler, Y., C. Hodson, and S.L. Milgram, The apical compartment: trafficking pathways, regulators and scaffolding proteins. Current Opinion in Cell Biology, 2003. 15(4): p. 423-429. 26.Zimmermann, P., et al., Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell, 2005. 9(3): p. 377-88. 27.Cao, T.T., et al., A kinase-regulated PDZ-domain interaction controls endocytic sorting of the [beta]2-adrenergic receptor. Nature, 1999. 401(6750): p. 286-290. 28.Braithwaite, S.P., H. Xia, and R.C. Malenka, Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7096-101. 29.Gage, R.M., A Transplantable Sorting Signal That Is Sufficient to Mediate Rapid Recycling of G Protein-coupled Receptors. Journal of Biological Chemistry, 2001. 276(48): p. 44712-44720. 30.Carlton, J.G. and P.J. Cullen, Coincidence detection in phosphoinositide signaling. Trends in Cell Biology, 2005. 15(10): p. 540-547. 31.Tejada, M.d.l.A., L.J. Jensen, and D.A. Klaerke, PIP2 modulation of Slick and Slack K+ channels. Biochemical and Biophysical Research Communications, 2012. 424(2): p. 208-213. 32.Lunn, M.-L., et al., A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci, 2007. 10(10): p. 1249-1259. 33.Soboloff, J., et al., STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol, 2012. 13(9): p. 549-565. 34.Berridge, M.J., M.D. Bootman, and H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003. 4(7): p. 517-529. 35.Berridge, M.J., Neuronal calcium signaling. Neuron, 1998. 21(1): p. 13-26. 36.Bers, D., Excitation-contraction coupling and cardiac contractile force. Vol. 237. 2001: Springer Science & Business Media. 37.Fabiato, A., Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology-Cell Physiology, 1983. 245(1): p. C1-C14. 38.Barry, W.H. and J.H. Bridge, Intracellular calcium homeostasis in cardiac myocytes. Circulation, 1993. 87(6): p. 1806-15. 39.van der Werf, C. and A.A. Wilde, Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart, 2013. 99(7): p. 497-504. 40.Roos, J., et al., STIM1, an essential and conserved component of store-operated Ca2+ channel function. The Journal of cell biology, 2005. 169(3): p. 435-445. 41.Putney, J.W., Jr., A model for receptor-regulated calcium entry. Cell Calcium, 1986. 7(1): p. 1-12. 42.Putney, J.W., Jr., et al., Mechanisms of capacitative calcium entry. J Cell Sci, 2001. 114(Pt 12): p. 2223-9. 43.Kurebayashi, N. and Y. Ogawa, Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol, 2001. 533(Pt 1): p. 185-99. 44.Arakawa, N., et al., KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes. Biochem Biophys Res Commun, 2000. 279(2): p. 354-7. 45.Pang, Y., et al., Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes, 2002. 51(12): p. 3461-7. 46.Trepakova, E.S., et al., Calcium influx factor directly activates store-operated cation channels in vascular smooth muscle cells. J Biol Chem, 2000. 275(34): p. 26158-63. 47.Berridge, M.J., Capacitative calcium entry. Biochem J, 1995. 312 ( Pt 1): p. 1-11. 48.Hogan, P.G., R.S. Lewis, and A. Rao, Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol, 2010. 28: p. 491-533. 49.Lewis, R.S., Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol, 2011. 3(12). 50.Redondo, P.C., et al., A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood, 2006. 107(3): p. 973-9. 51.Verkhratsky, A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev, 2005. 85(1): p. 201-79. 52.Zhang, W. and M. Trebak, STIM1 and Orai1: novel targets for vascular diseases? Sci China Life Sci, 2011. 54(8): p. 780-5. 53.Zhu-Mauldin, X., et al., Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem, 2012. 287(46): p. 39094-106. 54.Luo, X., et al., STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol, 2012. 52(1): p. 136-47. 55.Hulot, J.S., et al., Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation, 2011. 124(7): p. 796-805. 56.Grant, A.O., Cardiac ion channels. Circ Arrhythm Electrophysiol, 2009. 2(2): p. 185-94. 57.Lai, L.C., et al., Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation. PLoS One, 2011. 6(8): p. e24375. 58.William J. Joiner1, M.D.T., Lu-Yang Wang1, Steven I. Dworetzky2, and L.G. Christopher G. Boissard2, Valentin K. Gribkoff2 and Leonard K. Kaczmarek1, Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. nature neuroscience, 1998. 1(6): p. 462-469. 59.Bers, D.M., Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol, 2008. 70: p. 23-49. 60.De Jong, A.M., et al., Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res, 2011. 89(4): p. 754-65. 61.Kho, C., et al., Refilling Intracellular Calcium Stores. Drug Discov Today Dis Mech, 2010. 7(2): p. e145-e150. 62.Hunton, D.L., et al., Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem, 2002. 277(16): p. 14266-73. 63.Uehara, A., et al., Store-operated Ca2+ entry uncoupled with ryanodine receptor and junctional membrane complex in heart muscle cells. Cell Calcium, 2002. 31(2): p. 89-96. 64.Hunton, D.L., et al., Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol, 2004. 286(3): p. H1124-32. 65.Ohba, T., et al., Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun, 2009. 389(1): p. 172-6. 66.Voelkers, M., et al., Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol, 2010. 48(6): p. 1329-34. 67.Touchberry, C.D., et al., Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun, 2011. 416(1-2): p. 45-50. 68.Estrada, I.A., et al., STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res, 2012. 111(9): p. 1166-75. 69.Wang, P., et al., Evidence that 2-aminoethoxydiphenyl borate provokes fibrillation in perfused rat hearts via voltage-independent calcium channels. Eur J Pharmacol, 2012. 681(1-3): p. 60-7. 70.Wolkowicz, P.E., et al., Pharmacological evidence for Orai channel activation as a source of cardiac abnormal automaticity. Eur J Pharmacol, 2011. 668(1-2): p. 208-16. 71.Nguyen, N., et al., STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca(2+) channel activity. Biochim Biophys Acta, 2013. 1833(6): p. 1294-303. 72.Li, H., et al., Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes. J Biol Chem, 2010. 285(50): p. 39171-9. 73.Dirksen, R.T., Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol, 2009. 587(Pt 13): p. 3139-47. 74.Vaca, L., SOCIC: the store-operated calcium influx complex. Cell Calcium, 2010. 47(3): p. 199-209. 75.Korzeniowski, M.K., et al., Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides. The Journal of Biological Chemistry, 2009. 284(31): p. 21027-21035. 76.Tsai, F.-C., et al., A polarized Ca(2+), diacylglycerol, and STIM1 signaling system regulates directed cell migration. Nature cell biology, 2014. 16(2): p. 133-144. 77.Bandara, S., S. Malmersjo, and T. Meyer, Regulators of calcium homeostasis identified by inference of kinetic model parameters from live single cells perturbed by siRNA. Sci Signal, 2013. 6(283): p. ra56.
|