跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡蔓綺
研究生(外文):Man-Chi Tsai
論文名稱:布魯格達氏症候群相關的基因突變KCNT1 R1106Q改變FPD和細胞質中的鈣離子恆定
論文名稱(外文):The Brugada Syndrome-associated KCNT1 mutation R1106Q changes FPD and cytosol calcium homeostasis in vitro
指導教授:江福田江福田引用關係
口試委員:莊志明蔡丰喬陳文彬盧子彬
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:58
中文關鍵詞:布魯格達氏症候群離子通道病變KCNT1心猝死SOCE
外文關鍵詞:Brugada syndromechannelopathyKCNT1SCDSOCE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有文獻指出,近期發現的KCNT1基因,又稱Slack,為一種鉀離子通道,其胺基酸序列1106位置的突變與罕見的遺傳性心臟離子通道病變-布魯格達氏症候群有關,此疾病會造成心律不整及突發性的猝死,而目前對KCNT1 R1106Q在心臟功能上的影響還尚未有相關研究。
先前研究指出,和布魯格達氏症候群相關的心肌離子通到的突變,造成心肌細胞流入的鈉、鈣離子及流出的鉀離子之間不平衡(內向正電流下降或外向正電流增加)導致此症候群心電圖典型的ST間段上升,表現出心律不整,是廣泛被接受的電位復極化(repolarization)理論。而KCNT1 R1106Q 是否會影響鉀離子的通透性,如使大量的鉀流出,增加電位復極化的速度,又或者,如此致命性的心臟疾病除了造成鉀離子在細胞內的變化外,對於維持心臟正常功能及心肌細胞電性活動皆很重要的鈣離子,是否也會有影響,也是我們很想了解的。本篇研究的目的即是想探討KCNT1 R1106Q突變是如何造成布魯格達氏症候群,其機制為何。
本篇研究使用可自發性放電的HL-1 細胞,大量表現KCNT1野生型和R1106Q突變型,監測其胞外電生理訊號。結果發現,KCNT1野生型的HL-1細胞測到比突變型還長的field potential duration (FPD),而突變型的FPD跟控制組比則是無太大差異的。而從HEK293T 細胞大量表現KCNT1野生型和R1106Q 突變型,並利用Fura-2 A.M.來觀察細胞質內鈣離子的變化的實驗中,發現KCNT1野生型的組別,細胞質內鈣離子濃度比突變型組高,且使細胞模擬產生SOCE (store-operated calcium entry)的實驗結果也發現,突變型組SOCE的能力跟野生型比有顯著性的降低,且此SOCE現象在兩組中皆可被BTP2 (SOCE抑制劑)抑制。
從上述實驗結果得知,KCNT1 R1106Q除了影響鉀離子的通透性外,在細胞中對鈣離子的恆定也扮演重要的角色。且KCNT1 R1106Q造成細胞質鈣離子濃度偏低,及影響 SOCE的能力,可能是造成布魯格達氏症候群的原因之一,為了驗證此臆測,還需要更多的實驗去證明。

The KCNT1 gene (also known as SLACK, SLO2.2) encodes a sodium-activated potassium (KNa) channel. KCNT1 R1106Q mutation has been previously linked to Brugada syndrome (BrS), a rare cardiac channelopathy associated with sudden cardiac death (SCD). The mechanism by which KCNT1 R1106Q causes Brugada syndrome is still unknown.
Previous studies have shown that in the reported channel mutations linked to BrS, the imbalance between inward and outward currents leads to the development of a characteristic notch and loss of the action potential dome mediated by an increase (relative or absolute) of the outward potassium currents. The alteration of repolarization produces the characteristic ST-segment elevation in the ECG of BrS.
We want to find out if the KCNT1 R1106Q mutation can also change potassium permeability, increasing the outward current that causes fast repolarization. Furthermore, we want to know if it could also affect calcium permeability in such a lethal cardiac disease, since calcium is an important ion that maintains normal heart function and electric activity. The aim of the present study is to understand whether and how KCNT1 mutation is related to Brugada syndrome by determining the functional consequences of this mutation and the mechanisms.
We used spontaneous beating HL-1 cells overexpressing KCNT1 wild-type (WT) and R1106Q to detect its extracellular field potential duration and found that KCNT1 WT has longer field potential duration (FPD) than in mutants. The mutant’s FPD was similar to control groups. Furthermore, we used HEK293T cells overexpressing KCNT1 wild-type (WT) and R1106Q to observe calcium homeostasis by using calcium indicator Fura-2 A.M. Interestingly, HEK293T overexpressed with the KCNT1 WT had a higher baseline calcium level than the mutant baseline level. Later on, we induced SOCE effect by depleting ER calcium, which showed that mutants can diminish SOCE effect. The SOCE inhibitor BTP2 could block this Ca2+ influx.
Together with these results, we hypothesized that KCNT1 may have a significant role in both controlling potassium permeability as well as maintaining cardiac Ca2+ homeostasis. Furthermore, the disruption of Ca2+ signaling by mutant KCNT1 may contribute to Brugada syndrome. To verify such speculations, further experiments still need to be conducted.

誌謝 Ⅰ
中文摘要 Ⅲ
Abstract Ⅴ
List of Figures Ⅹ
Chapter 1 Introduction 1
1.1 Pathophysiology mechanism of Brugada syndrome and de novo BrS-associated KCNT1 mutation 1
1.2 KCNT1 R1106Q and its C-terminal domain 3
1.3 The important role of calcium homeostasis in cardiac cells. 6
1.4 The aim of study 9
Chapter 2 Materials and Methods 11
2.1 Plasmid DNA construction 11
2.2 Generation of stable transfected HEK293T cell lines by lentivirus 11
2.3 Culture, transfection and Single cell Ca2+ imaging of HEK293T cells 12
2.4 Culture, transfection and MEA recording of HL-1 mouse cardiac cells 14
2.5 Fluorescence Microscopy 15
2.6 Statistical analysis 17
Chapter 3 Results 18
3.1 KCNT1 R1106Q has shorter field potential duration than WT 18
3.2 KCNT1 can control calcium homeostasis in vitro 19
3.3 R1106Q mutation decreases KCNT1 channel’s affinity to plasma membrane 20
Chapter 4 Discussion 22
4.1 The difference of FPD between KCNT1 WT and R1106Q overexpressing HL-1 cells 22
4.2 The novel role of KCNT1 in calcium homeostasis 23
4.3 The function of KCNT1’s C-terminal domain 27
Chapter 5 Future works 30
5.1 Validating the effect of KCNT1 on Ca2+ and K+ permeability 30
5.2 Studying the mechanism how KCNT1 regulates Ca2+ influx 31
5.3 Examining how mutant KCNT1 (R1106Q) causes diseases 33
Chapter 6 Figures 36
References 52
Supplementary Data 58

1.Brugada, P. and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol, 1992. 20(6): p. 1391-6.
2.Miyazaki, T., et al., Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. Journal of the American College of Cardiology, 1996. 27(5): p. 1061-1070.
3.Brugada, P., J. Brugada, and D. Roy, Brugada syndrome 1992-2012: 20 years of scientific excitement, and more. Eur Heart J, 2013. 34(47): p. 3610-5.
4.Chen, Q., et al., Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998. 392(6673): p. 293-296.
5.Vatta, M., et al., Novel mutations in domain I of SCN5A cause Brugada syndrome. Mol Genet Metab, 2002. 75(4): p. 317-24.
6.Cordeiro, J.M., et al., Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation, 2006. 114(19): p. 2026-33.
7.Casini, S., et al., Characterization of a novel SCN5A mutation associated with Brugada syndrome reveals involvement of DIIIS4-S5 linker in slow inactivation. Cardiovasc Res, 2007. 76(3): p. 418-29.
8.Pfahnl, A.E., et al., A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm, 2007. 4(1): p. 46-53.
9.Rook, M.B., et al., Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res, 1999. 44(3): p. 507-17.
10.Antzelevitch, C., et al., Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation, 2007. 115(4): p. 442-9.
11.Delpon, E., et al., Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol, 2008. 1(3): p. 209-18.
12.Benito, B., et al., Brugada syndrome. Rev Esp Cardiol, 2009. 62(11): p. 1297-315.
13.Juang, J.M., et al., Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep, 2014. 4: p. 6733.
14.Lim, C.X., et al., KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. Journal of Medical Genetics, 2016. 53(4): p. 217-225.
15.William J. Joiner, et al., Formation of intermediate-conductance
calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature neuroscience, 1998. 1(6): p. 462-469.
16.Kameyama, M., et al., Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature, 1984. 309(5966): p. 354-356.
17.Mori, K., et al., Effects of class III antiarrhythmic drugs on the Na(+)-activated K+ channels in guinea-pig ventricular cells. British Journal of Pharmacology, 1996. 119(1): p. 133-141.
18.William J. J., et al., Formation of intermediate-conductance
calcium-activated potassium channels by interaction of Slack and Slo subunits. Nature neuroscience, 1998. 1(6): p. 462-469.
19.Kim, G.E. and L.K. Kaczmarek, Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci, 2014. 8: p. 209.
20.Barcia, G., et al., De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet, 2012. 44(11): p. 1255-9.
21.Moller, R.S., et al., Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia, 2015. 56(9): p. e114-20.
22.Huang, K. K., et al., SETD2 histone modifier loss in aggressive GI stromal
tumours. Gut, 2015. 0: p. 1-13.
23.Bhattacharjee, A., et al., Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci, 2003. 23(37): p. 11681-91.
24.Zimmermann, P., The prevalence and significance of PDZ domain–phosphoinositide interactions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2006. 1761(8): p. 947-956.
25.Altschuler, Y., C. Hodson, and S.L. Milgram, The apical compartment: trafficking pathways, regulators and scaffolding proteins. Current Opinion in Cell Biology, 2003. 15(4): p. 423-429.
26.Zimmermann, P., et al., Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell, 2005. 9(3): p. 377-88.
27.Cao, T.T., et al., A kinase-regulated PDZ-domain interaction controls endocytic sorting of the [beta]2-adrenergic receptor. Nature, 1999. 401(6750): p. 286-290.
28.Braithwaite, S.P., H. Xia, and R.C. Malenka, Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7096-101.
29.Gage, R.M., A Transplantable Sorting Signal That Is Sufficient to Mediate Rapid Recycling of G Protein-coupled Receptors. Journal of Biological Chemistry, 2001. 276(48): p. 44712-44720.
30.Carlton, J.G. and P.J. Cullen, Coincidence detection in phosphoinositide signaling. Trends in Cell Biology, 2005. 15(10): p. 540-547.
31.Tejada, M.d.l.A., L.J. Jensen, and D.A. Klaerke, PIP2 modulation of Slick and Slack K+ channels. Biochemical and Biophysical Research Communications, 2012. 424(2): p. 208-213.
32.Lunn, M.-L., et al., A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci, 2007. 10(10): p. 1249-1259.
33.Soboloff, J., et al., STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol, 2012. 13(9): p. 549-565.
34.Berridge, M.J., M.D. Bootman, and H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003. 4(7): p. 517-529.
35.Berridge, M.J., Neuronal calcium signaling. Neuron, 1998. 21(1): p. 13-26.
36.Bers, D., Excitation-contraction coupling and cardiac contractile force. Vol. 237. 2001: Springer Science & Business Media.
37.Fabiato, A., Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology-Cell Physiology, 1983. 245(1): p. C1-C14.
38.Barry, W.H. and J.H. Bridge, Intracellular calcium homeostasis in cardiac myocytes. Circulation, 1993. 87(6): p. 1806-15.
39.van der Werf, C. and A.A. Wilde, Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart, 2013. 99(7): p. 497-504.
40.Roos, J., et al., STIM1, an essential and conserved component of store-operated Ca2+ channel function. The Journal of cell biology, 2005. 169(3): p. 435-445.
41.Putney, J.W., Jr., A model for receptor-regulated calcium entry. Cell Calcium, 1986. 7(1): p. 1-12.
42.Putney, J.W., Jr., et al., Mechanisms of capacitative calcium entry. J Cell Sci, 2001. 114(Pt 12): p. 2223-9.
43.Kurebayashi, N. and Y. Ogawa, Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol, 2001. 533(Pt 1): p. 185-99.
44.Arakawa, N., et al., KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes. Biochem Biophys Res Commun, 2000. 279(2): p. 354-7.
45.Pang, Y., et al., Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes, 2002. 51(12): p. 3461-7.
46.Trepakova, E.S., et al., Calcium influx factor directly activates store-operated cation channels in vascular smooth muscle cells. J Biol Chem, 2000. 275(34): p. 26158-63.
47.Berridge, M.J., Capacitative calcium entry. Biochem J, 1995. 312 ( Pt 1): p. 1-11.
48.Hogan, P.G., R.S. Lewis, and A. Rao, Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol, 2010. 28: p. 491-533.
49.Lewis, R.S., Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol, 2011. 3(12).
50.Redondo, P.C., et al., A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood, 2006. 107(3): p. 973-9.
51.Verkhratsky, A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev, 2005. 85(1): p. 201-79.
52.Zhang, W. and M. Trebak, STIM1 and Orai1: novel targets for vascular diseases? Sci China Life Sci, 2011. 54(8): p. 780-5.
53.Zhu-Mauldin, X., et al., Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem, 2012. 287(46): p. 39094-106.
54.Luo, X., et al., STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol, 2012. 52(1): p. 136-47.
55.Hulot, J.S., et al., Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation, 2011. 124(7): p. 796-805.
56.Grant, A.O., Cardiac ion channels. Circ Arrhythm Electrophysiol, 2009. 2(2): p. 185-94.
57.Lai, L.C., et al., Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation. PLoS One, 2011. 6(8): p. e24375.
58.William J. Joiner1, M.D.T., Lu-Yang Wang1, Steven I. Dworetzky2, and L.G. Christopher G. Boissard2, Valentin K. Gribkoff2 and Leonard K. Kaczmarek1, Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. nature neuroscience, 1998. 1(6): p. 462-469.
59.Bers, D.M., Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol, 2008. 70: p. 23-49.
60.De Jong, A.M., et al., Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res, 2011. 89(4): p. 754-65.
61.Kho, C., et al., Refilling Intracellular Calcium Stores. Drug Discov Today Dis Mech, 2010. 7(2): p. e145-e150.
62.Hunton, D.L., et al., Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem, 2002. 277(16): p. 14266-73.
63.Uehara, A., et al., Store-operated Ca2+ entry uncoupled with ryanodine receptor and junctional membrane complex in heart muscle cells. Cell Calcium, 2002. 31(2): p. 89-96.
64.Hunton, D.L., et al., Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol, 2004. 286(3): p. H1124-32.
65.Ohba, T., et al., Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun, 2009. 389(1): p. 172-6.
66.Voelkers, M., et al., Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol, 2010. 48(6): p. 1329-34.
67.Touchberry, C.D., et al., Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun, 2011. 416(1-2): p. 45-50.
68.Estrada, I.A., et al., STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res, 2012. 111(9): p. 1166-75.
69.Wang, P., et al., Evidence that 2-aminoethoxydiphenyl borate provokes fibrillation in perfused rat hearts via voltage-independent calcium channels. Eur J Pharmacol, 2012. 681(1-3): p. 60-7.
70.Wolkowicz, P.E., et al., Pharmacological evidence for Orai channel activation as a source of cardiac abnormal automaticity. Eur J Pharmacol, 2011. 668(1-2): p. 208-16.
71.Nguyen, N., et al., STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca(2+) channel activity. Biochim Biophys Acta, 2013. 1833(6): p. 1294-303.
72.Li, H., et al., Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes. J Biol Chem, 2010. 285(50): p. 39171-9.
73.Dirksen, R.T., Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol, 2009. 587(Pt 13): p. 3139-47.
74.Vaca, L., SOCIC: the store-operated calcium influx complex. Cell Calcium, 2010. 47(3): p. 199-209.
75.Korzeniowski, M.K., et al., Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides. The Journal of Biological Chemistry, 2009. 284(31): p. 21027-21035.
76.Tsai, F.-C., et al., A polarized Ca(2+), diacylglycerol, and STIM1 signaling system regulates directed cell migration. Nature cell biology, 2014. 16(2): p. 133-144.
77.Bandara, S., S. Malmersjo, and T. Meyer, Regulators of calcium homeostasis identified by inference of kinetic model parameters from live single cells perturbed by siRNA. Sci Signal, 2013. 6(283): p. ra56.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top