跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳鎮國
研究生(外文):Chen-Kuo Wu
論文名稱:三維數值模擬探討發光二極體中考慮奈米微結構的載子傳輸研究
論文名稱(外文):3D Numerical Carrier Transport Study by Considering Nano-Scale Structures in LEDs
指導教授:吳育任
口試委員:賴韋志張允崇盧廷昌
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:103
中文關鍵詞:藍綠色發光二極體合金含量波動非完整量子井結構V型缺陷氮化鎵氮化銦鎵氮化鋁鎵
外文關鍵詞:blue-green light emitting diodealloy fluctuationimperfect quantum well structureV-shaped pitGaNInGaNAlGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據實驗結果顯示,有許多奈米尺度的結構擾動存在於三元化合
物氮化銦鎵量子井以及氮化鋁鎵電子阻擋層中。而這寫結構擾動的
尺度從個位數奈米尺度(隨機合金分布擾動)、數十奈米尺度(不完整
量子井結構)、或數百奈米尺度(V型缺陷)。而這些奈米尺度的結構
擾動將會顯著地影響載子傳輸以及輻射發光複合。因此,我們有必
要使用一個適當的模型去分析其影響。本篇論文中,我們將使用我
們實驗室開發的三維有限元素帕松與漂移-擴散模型去分析這些主
題。首先,為了瞭解極化位勢壘如何影響氮化鎵元件系統中的載子
傳輸現象,我們將考慮隨機合金分佈擾動去分析n-i-n氮化銦鎵量子
井系統、n-i-n鋁化銦鎵量子位勢壘系統以及使用不同種電子阻擋層
的發光二極體去分析結構中的傳導帶位能分佈、電流-電壓表現以及
內部量子效應。結果顯示考慮隨機合金分佈擾動可以更能擬合實驗
電流-電壓曲線,也顯示在較薄的磊晶層中,隨機合金分佈擾動將會
更顯著地影響載子局域以及傳輸。此外,我們使用二維以及三維的
模型去分析常存於綠光發光二極體中量子井不完整的結構。結果顯
示,考慮了不完整的量子井結構的計算結果更能接近實際元件的表
現。有了較能適當描述綠光發光二極體電性的模型,我們更可進一
步分析綠光發光二極體中其他物理行為與表現。在最後一章,我們將探討考慮V型缺陷在氮化銦鎵藍光發光二極體中的物理特性。我
們將使用三維應力-應變計算程式以及載子傳輸模型去分析結構中的
電流走向,並更進一步討論對量子效率以及電流-電壓的表現。而模
擬結果顯示,在V型缺陷濃度較低的側壁量子井會提供較小的極化
位勢壘以及較淺的位能井。因此V型缺陷可以幫助載子注入,並幫
助載子注入平面的主動區,使得載子可以避免被非輻射複合中心所
影響。而相較於傳統量子井發光二極體結構,V型缺陷能使載子較
能平均的分佈在平面量子井中。此外,我們更進一步地結合隨機合
金分佈擾動模型以及V型缺陷結構,去探討V型缺陷對接通電壓和量
子效率表現的影響。V型缺陷的結構將會使存有V型缺陷的發光二極
體相較於沒有存有V型缺陷的元件,能提供更多載子路徑且幫助載
子的注入,使得含有V型缺陷的結構有著更小的接通電壓以及更高
的內部量子效率。此外,考慮合金分佈不均的發光二極體以及V型
缺陷模型的接通電壓計算結果更能解釋實驗觀察的接通電壓。本章
的最後一部份,我們將探討不同大小的V型缺陷對元件的影響。不
同大小的V型缺陷元件受陷阱所致的非輻射複合中心影響程度不同
以及有著不同大小的量子井發光區域,將會對有著不一樣的內部量
子效率的表現。V型缺陷的特殊結構不只能提供額外的電洞流的路
徑也能防止載子在線差排缺線中非輻射複合。
關鍵字: 藍綠色發光二極體, 合金含量波動, 非完整量子井結構, V型缺陷, 氮化鎵, 氮化銦鎵, 氮化鋁鎵

The experimental results show that there are nano-scale composition
fluctuations existing in the ternary alloy of InGaN quantum
wells (QWs) and AlGaN electron blocking layer (EBL). The scales of
fluctuations are ranging from the units nanometer scale (random alloy
fluctuations), tens nanometer scale (imperfect QWs), or hundreds
nanometer scale (V-pits). The existence of nano-scale fluctuations
will affect the carrier transport and radiative recombination strongly.
Therefore, we need to develop a suitable model to analyze these effects.
In this thesis, we applied our inhouse 3D FEM Poisson and
drift-diffusion solver to analyze these problems. In the beginning, to
understand how the piezoelectric barrier influence the carrier injection
in GaN device system, we took the n-i-n InGaN system, n-i-n AlGaN
quantum barrier (QB) and light emitting diodes (LEDs) with different
EBLs to analyze the conduction band potential distribution, I-V
performance and internal quantum efficiency (IQE) by considering the
random alloy fluctuation. The results show a better fit in I-V curve
and reveal that the random alloy fluctuation will affect the carrier confinement
and transport significantly, epecially in a thinner epi-layer case. Besides, the imperfect QWs which commonly exist in the green
emission LEDs are modeled by our 2D and 3D simulation programs.
According to the calculated results, we can more approach the experimental
IV performance by considering imperfect QW structures.
With properly modeling the electric property, this model could provide
a basis for further modeling other physical properties in green LEDs.
In the last part, a V-pit embedded inside the blue InGaN LED was
studied. A 3D strain-stress sovler and carrier transport model were
employed to study the current path, where the quantum efficiency
and turn-on voltage will be discussed. Our calculated results show
that the shallow sidewall QWs will provide extra hole current flow
paths, and make the carrier distribution more uniform along lateral
QWs than traditional planar MQWs, which have high piezoelectric
barriers make carriers hard to flow through. In addition, the random
alloy fluctuation model is applied in the V-pit structure to compare the
turn-on voltage and quantum efficiency with planar structure LEDs.
The sidewall structure will provide more percolation paths for carriers
and improve the carrier injection so that the V-pit LEDs perform
smaller turn-on voltage and higher simulated IQE value than planar
MQW LEDs. Moreover, the simulated turn-on voltage of the V-pit LED with the random alloy fluctuation model can be pushed earlier to
appropriately explain the experimental data. In the last part of this
section, the carrier transport by considering the size effect is studied.
The variation of the internal quantum efficiency (IQE) for different
V-pit sizes is due to the trap-assisted nonradiative recombination and
QW areas. The V-pit structure would not only enhance the hole percolation
length but act as a potential barrier to prevent carriers from
nonradiatively recombining in threading dislocations (TDs).

Keywords: blue-green light emitting diode, alloy fluctuation, imperfect quantum well structure, V-shaped pit, GaN, InGaN, AlGaN

目錄
口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Random Alloy Fluctuation . . . . . . . . . . . . . . . . 5
1.3 Imperfect Quantum Well . . . . . . . . . . . . . . . . . 7
1.4 V-Shaped Pit in GaN Based LEDs . . . . . . . . . . . 10
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . 14
2 SimulationMethod . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Computation Algorithm . . . . . . . . . . . . . . . . . 17
2.2 Generation of the Random Alloy Composition Map . . 19
2.3 3D FEM Elastic Strain Solver . . . . . . . . . . . . . . 23
2.4 3-D Poisson Drift-Diffusion Self-Consistent Solver . . . 26
3 Percolation Transport in the Random Alloy System . . . . . 28
3.1 Electron Transport in n-GaN/ i-InGaN / n-GaN Structures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Electron Transport in n-GaN/ i-AlGaN / n-GaN Structures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 3D Vertical Transport in LED Structures with Different
EBLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 The Influence of Imperfect QWs in the Carrier Transport
Simulation of Green LEDs . . . . . . . . . . . . . . . . . . . 55
4.1 2D Examination of Green Emission bt the Imperfect
QWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 3D Examination of Green Emission Imperfect QWs . . 64
5 3D Carrier Transport Study the Influence of V-shape Pits in
Light Emitting Diodes . . . . . . . . . . . . . . . . . . . . . 68
5.1 The Electric and Optical Property of V-shaped Pits in
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Geometric Diameter study of V-shaped Pits to the Carrier
Injection . . . . . . . . . . . . . . . . . . . . . . . 77
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

[1] D. A. Browne, B. Mazumder, Y.-R. Wu, and J. S. Speck, “Electron
transport in unipolar InGaN/GaN multiple quantum well
structures grown by NH3 molecular beam epitaxy,” Journal of
Applied Physics, vol. 117, no. 13, p. 185703, 2015.
[2] N. K. van der Laak, R. A. Oliver, M. J. Kappers, and C. J.
Humphreys, “Role of gross well-width fluctuations in bright,
green-emitting single InGaN/GaN quantum well structures,” Applied
physics letters, vol. 90, no. 12, pp. 121911–121911, 2007.
[3] N. Van der Laak, R. Oliver, M. Kappers, and C. Humphreys,
“Characterization of InGaN quantum wells with gross fluctuations
in width,” Journal of applied physics, vol. 102, no. 1,
p. 013513, 2007.
[4] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow,
G. Ade, and P. Hinze, “Suppression of nonradiative recombination
by V-shaped pits in GaInN/GaN quantum wells produces a large
increase in the light emission efficiency,” Physical review letters,
vol. 95, no. 12, p. 127402, 2005.
[5] S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, and K. Hono,
“Atomic scale characterization of GaInN/GaN multiple quantum
wells in V-shaped pits,” Applied Physics Letters, vol. 98, no. 18,
p. 181904, 2011.
[6] D. A. Browne, B. Mazumder, Y.-R. Wu, and J. S. Speck, “Investigation
of electron transport through InGaN quantum well
structures,” in 14th Electronic Materials Conference, Santa Barbara,
USA, June 25-27, 2014.
[7] Y.-Y. Lin, R. Chuang, S.-J. Chang, S. Li, Z.-Y. Jiao, T. Ko,
S. Hon, and C. Liu, “GaN-based LEDs with a chirped multiquantum
barrier structure,” IEEE Photonics Technology Letters,
vol. 24, pp. 1600–1602, Sept 2012.
[8] J. Piprek and Z. M. Simon Li, “Origin of InGaN lightemitting
diode efficiency improvements using chirped AlGaN
multi-quantum barriers,” Applied Physics Letters, vol. 102, no. 2,
p. 023510, 2013.
[9] C.-H. Lu, Y.-C. Li, Y.-H. Chen, S.-C. Tsai, Y.-L. Lai, Y.-L. Li,
and C.-P. Liu, “Output power enhancement of InGaN/GaN based
green light-emitting diodes with high-density ultra-small In-richquantum dots,” Journal of Alloys and Compounds, vol. 555,
pp. 250–254, 2013.
[10] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann,
M. Eickhoff, M. Stuzmann, F. Bernardini, V. Fiorentini,
V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties
of Al(In)GaN/GaN hetero- and quantum well structures,” J.
Phys.: Condens. Matter, vol. 14, pp. 3399–3434, 2002.
[11] A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, and
E. U. Group, “Strain-induced polarization in wurtzite III-nitride
semipolar layers,” Journal of Applied Physics, vol. 100, no. 2,
p. 023522, 2006.
[12] C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti,
and J. S. Speck, “The efficiency challenge of nitride light-emitting
diodes for lighting,” physica status solidi (a), 2015.
[13] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination
rates in nitrides from first principles,” Applied Physics
Letters, vol. 94, no. 19, p. 191109, 2009.
[14] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle,
“Indirect Auger recombination as a cause of efficiency droop innitride light-emitting diodes,” Applied Physics Letters, vol. 98,
no. 16, p. 161107, 2011.
[15] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch,
“Direct measurement of Auger electrons emitted from a semiconductor
light-emitting diode under electrical injection: Identification
of the dominant mechanism for efficiency droop,” Phys. Rev.
Lett., vol. 110, p. 177406, Apr 2013.
[16] M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer,
M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification
of nnp and npp auger recombination as significant contributor
to the efficiency droop in (GaIn) N quantum wells by visualization
of hot carriers in photoluminescence,” Applied Physics
Letters, vol. 103, no. 7, p. 071108, 2013.
[17] J.-H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. J.
Kim, and R. D. Dupuis, “Control of quantum-confined stark effect
in InGaN-based quantum wells,” Selected Topics in Quantum
Electronics, IEEE Journal of, vol. 15, no. 4, pp. 1080–1091, 2009.
[18] H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, “Analysis of efficiency
droop in nitride light-emitting diodes by the reduced effective vol-ume of InGaN active material,” Applied Physics Letters, vol. 100,
no. 13, p. 131109, 2012.
[19] J.Wang, L.Wang, W. Zhao, Z. Hao, and Y. Luo, “Understanding
efficiency droop effect in InGaN/GaN multiple-quantum-well blue
light-emitting diodes with different degree of carrier localization,”
Applied Physics Letters, vol. 97, no. 20, p. 201112, 2010.
[20] S. Hammersley, D. Watson-Parris, P. Dawson, M. Godfrey,
T. Badcock, M. Kappers, C. McAleese, R. Oliver, and
C. Humphreys, “The consequences of high injected carrier densities
on carrier localization and efficiency droop in InGaN/GaN
quantum well structures,” Journal of Applied Physics, vol. 111,
no. 8, p. 083512, 2012.
[21] C. kang Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study
on the optimization for current spreading effect of lateral
GaN/InGaN LEDs,” IEEE Transactions on Electron Devices,
vol. 61, pp. 511–517, Feb 2014.
[22] V. Malyutenko, S. Bolgov, and A. Podoltsev, “Current crowding
effect on the ideality factor and efficiency droop in blue lateral In-GaN/GaN light emitting diodes,” Applied Physics Letters, vol. 97,
no. 25, p. 251110, 2010.
[23] J. Hader, J. Moloney, and S. Koch, “Density-activated defect recombination
as a possible explanation for the efficiency droop in
GaN-based diodes,” in SPIE OPTO, pp. 79540H–79540H, International
Society for Optics and Photonics, 2011.
[24] X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, A. Matulionis, U. Ozgur,
and H. Morkoc, “Pivotal role of ballistic and quasi-ballistic
electrons on LED efficiency,” Superlattices and Microstructures,
vol. 48, pp. 133–153, 2010.
[25] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan,
“Suppression of electron overflow and efficiency droop in Npolar
GaN green light emitting diodes,” Applied Physics Letters,
vol. 100, no. 11, p. 111118, 2012.
[26] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura,
“Measurement of electron overflow in 450 nm InGaN lightemitting
diode structures,” Applied Physics Letters, vol. 94, no. 6,
p. 061116, 2009.
[27] J. Xie, X. Ni, Q. Fan, R. Shimada, Umit Ozgur, and H. Morko¸c,
“On the efficiency droop in InGaN multiple quantum well blue
light emitting diodes and its reduction with p-doped quantum
well barriers,” Applied Physics Letters, vol. 93, no. 12, p. 121107,
2008.
[28] J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B.
Wang, “Barrier effect on hole transport and carrier distribution in
InGaN/GaN multiple quantum well visible light-emitting diodes,”
Applied Physics Letters, vol. 93, no. 2, p. 021102, 2008.
[29] C. Wang, S. Chang, P. Ku, J. Li, Y. Lan, C. Lin, H. Yang,
H. Kuo, T. Lu, S. Wang, et al., “Hole transport improvement
in InGaN/GaN light-emitting diodes by graded-composition multiple
quantum barriers,” Applied Physics Letters, vol. 99, no. 17,
p. 171106, 2011.
[30] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G.
Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)
InGaN/ GaN multiple quantum well light-emitting diodes,” Applied
Physics Letters, vol. 92, no. 5, p. 053502, 2008.
[31] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert,
H. Shim, M.-H. Kim, and C. Sone, “Asymmetry of carrier transport
leading to efficiency droop in GaInN based light-emitting
diodes,” Applied Physics Letters, vol. 99, no. 25, p. 251115, 2011.
[32] N. Bochkareva, V. Voronenkov, R. Gorbunov, A. Zubrilov, Y. S.
Lelikov, P. Latyshev, Y. Rebane, A. Tsyuk, and Y. Shreter,
“Defect-related tunneling mechanism of efficiency droop in IIInitride
light-emitting diodes,” Applied Physics Letters, vol. 96,
no. 13, p. 133502, 2010.
[33] B. Monemar and B. Sernelius, “Defect related issues in the current
roll-off in InGaN based light emitting diodes,” Applied Physics
Letters, vol. 91, no. 18, p. 181103, 2007.
[34] J. Piprek and S. Li, “Electron leakage effects on GaN-based lightemitting
diodes,” Optical and Quantum Electronics, vol. 42, no. 2,
pp. 89–95, 2010.
[35] Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, T.-C. Hsu, and Y.-J. Shen, “Effect
of p-type last barrier on efficiency droop of blue InGaN lightemitting
diodes,” IEEE Journal of Quantum Electronics, vol. 46,
pp. 1214–1220, Aug 2010.
36] S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved
cathodoluminescence spectra of InGaN quantum wells,” Applied
physics letters, vol. 71, no. 16, pp. 2346–2348, 1997.
[37] N. K. van der Laak, R. A. Oliver, M. J. Kappers, and C. J.
Humphreys, “Role of gross well-width fluctuations in bright,
green-emitting single InGaN/GaN quantum well structures,” Applied
physics letters, vol. 90, no. 12, pp. 121911–121911, 2007.
[38] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The
influence of random indium alloy fluctuations in indium gallium
nitride quantum wells on the device behavior,” Journal of Applied
Physics, vol. 116, no. 11, p. 113104, 2014.
[39] C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-
R. Wu, “Three dimensional numerical study on the efficiency of
a core-shell InGaN/GaN multiple quantum well nanowire lightemitting
diodes,” Journal of Applied Physics, vol. 113, no. 18,
p. 183104, 2013.
[40] C.-K. Li, P.-C. Yeh, J.-W. Yu, L.-H. Peng, and Y.-R. Wu, “Scaling
performance of Ga2O3/GaN nanowire field effect transistor,”
Journal of Applied Physics, vol. 114, no. 16, p. 163706, 2013.
[41] C.-K. Wu, C.-K. Li, and Y.-R. Wu, “Percolation transport study
in nitride based LED by considering the random alloy fluctuation,”
Journal of Computational Electronics, vol. 14, no. 2,
pp. 416–424, 2015.
[42] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing
the physical properties of InGaN multiple quantum well
light emitting diodes from nano scale structure,” Applied Physics
Letters, vol. 101, no. 8, p. 083505, 2012.
[43] J. R. Riley, T. Detchprohm, C. Wetzel, and L. J. Lauhon, “On
the reliable analysis of indium mole fraction within InxGa1−xN
quantum wells using atom probe tomography,” Applied Physics
Letters, vol. 104, no. 15, p. 152102, 2014.
[44] R. Shivaraman, Y. Kawaguchi, S. Tanaka, S. DenBaars, S. Nakamura,
and J. Speck, “Comparative analysis of 2021 and 2021
semipolar GaN light emitting diodes using atom probe tomography,”
Applied Physics Letters, vol. 102, no. 25, pp. 251104–4,
2013.
[45] S. E. Bennett, D. W. Saxey, M. J. Kappers, J. S. Barnard, C. J.
Humphreys, G. D. Smith, and R. A. Oliver, “Atom probe to-mography assessment of the impact of electron beam exposure on
InxGa1−xN/GaN quantum wells,” Applied Physics Letters, vol. 99,
no. 2, p. 021906, 2011.
[46] M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys,
P. H. Clifton, D. Larson, D. W. Saxey, and A. Cerezo, “Threedimensional
atom probe analysis of green- and blue-emitting
InxGa1−xN/GaN multiple quantum well structures,” Journal of
Applied Physics, vol. 104, no. 1, p. 013524, 2008.
[47] M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, D. J.
Stokes, P. H. Clifton, and A. Cerezo, “Three-dimensional atom
probe studies of an InxGa1−xN/GaN multiple quantum well structure:
Assessment of possible indium clustering,” Applied Physics
Letters, vol. 90, no. 6, 2007.
[48] D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J.
Galtrey, M. J. Kappers, and C. J. Humphreys, “Carrier localization
mechanisms in InxGa1−xN/GaN quantum wells,” Phys. Rev.
B, vol. 83, p. 115321, Mar 2011.
[49] J. Speck, “Unraveling the efficiency limits of GaN-based emitters
and the surprising connection to electron devices,” in ISSLED,2014.
[50] W. Lv, L. Wang, L. Wang, Y. Xing, D. Yang, Z. Hao, and Y. Luo,
“InGaN quantum dot green light-emitting diodes with negligible
blue shift of electroluminescence peak wavelength,” Applied
Physics Express, vol. 7, no. 2, p. 025203, 2014.
[51] W. Lv, L. Wang, J. Wang, Y. Xing, J. Zheng, D. Yang, Z. Hao,
and Y. Luo, “Green and red light-emitting diodes based on multilayer
InGaN/GaN dots grown by growth interruption method,”
Japanese Journal of Applied Physics, vol. 52, no. 8S, p. 08JG13,
2013.
[52] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada,
Y. Kaneko, and S. Wang, “Pit formation in GaInN quantum
wells,” Applied physics letters, vol. 72, no. 6, pp. 710–712, 1998.
[53] C.-Y. Chang, H. Li, Y.-T. Shih, and T.-C. Lu, “Manipulation of
nanoscale v-pits to optimize internal quantum efficiency of InGaN
multiple quantum wells,” Applied Physics Letters, vol. 106, no. 9,
p. 091104, 2015.
[54] N. Okada, H. Kashihara, K. Sugimoto, Y. Yamada, and
K. Tadatomo, “Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties
for InGaN/GaN based light-emitting diodes,” Journal of
Applied Physics, vol. 117, no. 2, p. 025708, 2015.
[55] J. Kim, J. Kim, Y. Tak, S. Chae, J.-Y. Kim, and Y. Park, “Effect
of V-shaped pit size on the reverse leakage current of InGaN/GaN
light-emitting diodes,” Electron Device Letters, IEEE, vol. 34,
no. 11, pp. 1409–1411, 2013.
[56] Z. Quan, L. Wang, C. Zheng, J. Liu, and F. Jiang, “Roles of
V-shaped pits on the improvement of quantum efficiency in In-
GaN/GaN multiple quantum well light-emitting diodes,” Journal
of Applied Physics, vol. 116, no. 18, p. 183107, 2014.
[57] J. Kim, Y.-H. Cho, D.-S. Ko, X.-S. Li, J.-Y. Won, E. Lee, S.-H.
Park, J.-Y. Kim, and S. Kim, “Influence of V-pits on the efficiency
droop in InGaN/GaN quantum wells,” Optics express, vol. 22,
no. 103, pp. A857–A866, 2014.
[58] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities,”
Int. J. Numer. Meth. Engng., vol. 79, p. 1309V1331, 2009.
[59] M. Sabathil, A. Laubsch, and N. Linder, “Self-consistent modeling
of resonant PL in InGaN SQW LED-structure,” Proc. SPIE,
vol. 6486, pp. 64860V–9, 2007.
[60] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters
for III–V compound semiconductors and their alloys,”
Journal of Applied Physics, vol. 89, no. 11, pp. 5815–5875, 2001.
[61] S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite
semiconductors,” Phys. Rev. B, vol. 54, pp. 2491–2504, Jul 1996.
[62] J. Wu, “When group-III nitrides go infrared: New properties
and perspectives,” Journal of Applied Physics, vol. 106, no. 1,
p. 011101, 2009.
[63] C.-C. Hsu, C.-K. Wu, C.-K. Li, C.-H. Wu, and Y.-R. Wu, “Analyzing
the strain distribution in the InGaN quantum well with
random indium alloy fluctuation by 3D finite element strain analysis
model,” in Compound Semiconductor, 2015.
[64] Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and
optical properties of InGaN quantum dot based light emitters for
solid state lighting,” Journal of applied physics, vol. 105, no. 1,
p. 013117, 2009.
[65] C.-C. Hsu, 3D Finite Element Strain Analysis of InGaN Quantum
Well Structures. National Taiwan University Graduate Institute
of Electro-Optical Engineering, 2015.
[66] D. N. Nath, Z. C. Yang, C.-Y. Lee, P. S. Park, Y.-R. Wu, and
S. Rajan, “Unipolar vertical transport in GaN/AlGaN/GaN heterostructures,”
Applied Physics Letters, vol. 103, no. 2, p. 022102,
2013.
[67] S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, and K. Hono,
“Atomic scale characterization of GaInN/GaN multiple quantum
wells in V-shaped pits,” Applied Physics Letters, vol. 98, no. 18,
p. 181904, 2011.
[68] X. Wu, J. Liu, Z. Quan, C. Xiong, C. Zheng, J. Zhang, Q. Mao,
and F. Jiang, “Electroluminescence from the sidewall quantum
wells in the V-shaped pits of InGaN light emitting diodes,” Applied
Physics Letters, vol. 104, no. 22, p. 221101, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊