|
1.R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957). 2.W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115 (2008). 3.W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). 4.J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991). 5.E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135 (1968). 6.C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005). 7.S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870 (2003). 8.H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144 (2005). 9.J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). 10.V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). 11.J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). 12.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). 13.G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908). 14.V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996). 15.M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985). 16.S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441 (1995). 17.W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997). 18.C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89, 231119 (2006). 19.T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998). 20.H. F. Ghaemi, T. Thio, D. E. Grupp, T.W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes” Phys. Rev. B 58, 6779 (1998). 21.H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944). 22.A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Opt. Lett. 5, 368 (1980). 23.A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981). 24.O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002). 25.K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). 26.Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007). 27.D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002). 28.E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005). 29.T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001). 30.S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997). 31.J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003). 32.A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003). 33.M. A. Khan, “AlGaN multiple quantum well based deep UV LEDs and their applications,” Phys. Stat. Sol. A 203, 1764-1770 (2006). 34.H. Hirayama, S. Fujikawa, and N. Kamata, “Recent progress in AlGaN- based deep-UV LEDs,” Electron. Commun. Jpn. 98, 1-8 (2015). 35.Y. Ekinci, H.H. Solak, J.F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104 (2008). 36.G.H. Chan, J. Zhao, G.C. Schatz, and R.P.V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112, 13958-13963 (2008). 37.J. Hu, L. Chen, Z. Lian, M.Cao, H. Li, W. Sun, N. Tong, and H. Zeng, “Deep-Ultraviolet-Blue-Light Surface Plasmon Resonance of Al and Alcore/Al2O3shell in Spherical and Cylindrical Nanostructures,” J. Phys. Chem. C 116, 15584-15590 (2012). 38.G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano. 7, 5834-5841 (2013). 39.C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8, 1461 (2008). 40.Y. Ekinci, H. H. Solak, and C. David, “Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays,” Opt. Lett. 32, 172-174 (2007). 41.J. Martin, J. Proust, D. Gerard, and J. Plain, “Localized Surface Plasmon Resonances in the Ultraviolet From Large Scale Nanostructured Aluminum Films,” Opt. Mater. Express 3, 954-959 (2013). 42.K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014). 43.N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012). 44.C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013). 45.S. Kalusniak, S. Sadofev, and F. Henneberger, “Negative refraction at telecommunication wavelengths through plasmon-photon hybridization,” Opt. Express 23, 30079-30087 (2015). 46.E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946). 47.A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). 48.K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004). 49.D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). 50.G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). 51.Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011). 52.Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23, 30709-30720 (2015). 53.C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014). 54.C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014). 55.C. H. Lin, C. H. Chen, Y. F. Yao, C. Y. Su, P. Y. Shih, H. S. Chen, C. Hsieh, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Behaviors of surface plasmon coupled light-emitting diodes induced by surface Ag nanoparticles on dielectric interlayers,” Plasmonics 10, 1029-1040 (2015). 56.C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010). 57.C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015). 58.K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN/AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84, 5264-5266 (2004). 59.J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100, 021101 (2012). 60.H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37, 3693-3695 (2010).
|