|
[1] N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport in neat thin films of phosphorescent iridium complexes,” Japanese journal of applied physics, vol. 44, no. 6R, p. 3691, 2005. [2] U. Wolf, H. Bassler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chemical physics, vol. 222, no. 2, pp. 259–267, 1997. [3] S. M. Lele, “Sustainable development: a critical review,” World development, vol. 19, no. 6, pp. 607–621, 1991. [4] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274–1278, 2005. [5] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics, vol. 3, no. 4, pp. 180–182, 2009. [6] Y. Chen, K. Denis, P. Kazlas, and P. Drzaic, “12.2: A Conformable Electronic Ink Display using a Foil-Based a-Si TFT Array,” in SID Symposium Digest of Technical Papers, vol. 32, pp. 157–159, Wiley Online Library, 2001. [7] B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polymer International, vol. 55, no. 6, pp. 572–582, 2006. [8] H. Jiang, S. Jin, J. Li, J. Shakya, and J. Lin, “III-nitride blue microdisplays,” Applied Physics Letters, vol. 78, no. 9, pp. 1303– 1305, 2001. [9] O. Nuyken, S. Jungermann, V. Wiederhirn, E. Bacher, and K. Meerholz, “Modern trends in organic light-emitting devices (OLEDs),” Monatshefte fur Chemie/Chemical Monthly, vol. 137, no. 7, pp. 811–824, 2006. [10] H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Optics express, vol. 16, no. 15, pp. 11044– 11051, 2008. [11] R. Coehoorn, H. van Eersel, P. Bobbert, and R. Janssen, “Kinetic monte carlo study of the sensitivity of oled efficiency and lifetime to materials parameters,” Advanced Functional Materials, vol. 25, no. 13, pp. 2024–2037, 2015. [12] M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area oled devices with various grid geometries,” Organic Electronics, vol. 14, no. 10, pp. 2387– 2391, 2013. [13] I.-H. Lu and Y.-R.Wu, “Modeling for carrier transportation in organic light-emitting diode by considering effective tail states,” in Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2015 22nd International Workshop on, pp. 95–96, IEEE, 2015. [14] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913–915, 1987. [15] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, no. 5409, pp. 1900–1902, 1999. [16] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Applied Physics Letters, vol. 79, no. 2, pp. 156–158, 2001. [17] F. Nuesch, E. Forsythe, Q. Le, Y. Gao, and L. Rothberg, “Importance of indium tin oxide surface acido basicity for charge injec-tion into organic materials based light emitting diodes,” Journal of Applied Physics, vol. 87, no. 11, pp. 7973–7980, 2000. [18] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Applied Physics Letters, vol. 85, no. 16, pp. 3450–3452, 2004. [19] S. Shaheen, G. Jabbour, M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian,M.-F. Nabor, R. Schlaf, E.Mash, and N. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” Journal of applied physics, vol. 84, no. 4, pp. 2324–2327, 1998. [20] S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off,” Ad- vanced Materials, vol. 20, no. 21, pp. 4189–4194, 2008. [21] S.-J. Su, H. Sasabe, T. Takeda, and J. Kido, “Pyridine-containing bipolar host materials for highly efficient blue phosphorescent oleds,” Chemistry of Materials, vol. 20, no. 5, pp. 1691–1693, 2008. [22] J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Applied Physics Let- ters, vol. 88, no. 17, p. 171109, 2006. [23] B. Movaghar, M. Grunewald, B. Ries, H. Bassler, and D. Wurtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Physical Review B, vol. 33, no. 8, p. 5545, 1986. [24] E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Applied Physics Letters, vol. 80, no. 20, pp. 3838–3840, 2002. [25] H. Bassler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” physica status solidi (b), vol. 175, no. 1, pp. 15–56, 1993. [26] W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Physical review letters, vol. 94, no. 20, p. 206601, 2005. [27] C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Physical Review Letters, vol. 91, no. 21, p. 216601, 2003. [28] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Br´edas, “Charge transport in organic semiconductors,” Chemical reviews, vol. 107, no. 4, pp. 926–952, 2007. [29] Y. Olivier, V. Lemaur, J.-L. Br´edas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” The Journal of Physical Chemistry A, vol. 110, no. 19, pp. 6356– 6364, 2006. [30] B. Crone, P. Davids, I. Campbell, and D. Smith, “Device model investigation of single layer organic light emitting diodes,” Jour- nal of applied physics, vol. 84, no. 2, pp. 833–842, 1998. [31] P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Physical Review B, vol. 55, no. 2, p. R656, 1997. [32] M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Physical Review B, vol. 57, no. 20, p. 12964, 1998. [33] M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated gaussian disorder,” Organic Electronics, vol. 10, no. 3, pp. 437–445, 2009. [34] J. Yeargan and H. Taylor, “The poole-frenkel effect with compensation present,” Journal of Applied Physics, vol. 39, no. 12, pp. 5600–5604, 1968. [35] G. Jegert, A. Kersch, W. Weinreich, U. Schro der, and P. Lugli, “Modeling of leakage currents in high-dielectrics: Threedimensional approach via kinetic monte carlo,” Applied Physics Letters, vol. 96, no. 6, p. 062113, 2010. [36] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Applied physics letters, vol. 83, no. 3, pp. 569–571, 2003. [37] C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Organic Electronics, vol. 12, no. 3, pp. 547–555, 2011. [38] Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” Journal of Physics: Condensed Matter, vol. 20, no. 33, p. 335204, 2008. [39] O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy & Environmental Sci- ence, vol. 8, no. 7, pp. 1867–1888, 2015. [40] E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (III)-cored electroluminescent dendrimers,” Applied Physics Letters, vol. 86, no. 9, pp. 91104–91104, 2005. [41] M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151–154, 1998.
|