跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳祥碩
研究生(外文):Hsiang-Shuo WU
論文名稱:高品質氮化鎵類發光二極體之光電效能優化
論文名稱(外文):The Photoelectric Effect of High Quality GaN-based Light-Emitting Diodes
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
口試委員:孫允武孫建文陳啟東徐大正
口試日期:2016-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:發光二極體氮化鎵圖案化藍寶石基板濕式蝕刻電子束微影穿隧差排密度壓縮應力磊晶成長模型效率衰減
外文關鍵詞:GaN-based Light-emitting diodesNano-Pattered Sapphire SubstratesElectron-beam LithographyWet-etchingThreading dislocationsCompressive StressEpitaxial ModelEfficiency Droop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在製作以藍寶石為基板的氮化鎵(GaN)類發光二極體(Light-Emitting Diodes, LEDs)時,由於磊晶層與基板間的晶格常數及熱膨脹係數不同,將使磊晶層受到壓縮應力(Compressive Strain),並產生大量穿隧差排(Threading Dislocations, TDs),導致降低磊晶層的品質及LED發光效率。透過圖案化藍寶石基板(Patterned Sapphire Substrates, PSSs)是一種可以有效減少壓縮應力和穿隧差排的方法,並且可以提高光萃取率和發光效率。
本篇論文將探討在PSS的設計中,如何調變表面結構來減少穿隧差排密度及壓縮應力。吾人利用電子束微影系統搭配我們的濕蝕刻技術,在C-Plane的藍寶石基板上製作一系列不同週期、不同結構大小、但深度同為1200奈米的表面微結構,並使用有機金屬化學氣象沉積系統來磊晶。透過PL光致激發系統及Raman光譜儀系統,我們發現在基板表面微結構相互夾止成特殊”鷹嘴狀”或是”三芒星狀”時,將達到主動層之穿隧差排密度的最低點,而其LED元件也擁有最佳的發光效率。在其中,我們證明效率衰減起因於主動層之穿隧差排,而且以四方(Cubic)排列之週期性結構相較於六方(Hexagonal)排列的結構,擁有較佳之發光效率。


In the light-emitting diodes (LEDs) technology, we usually use sapphire for the substrate. Due to the large lattice mismatch between GaN and Sapphire substrate, GaN will get compressive strain from substrate and exhibits lots of threading dislocations(TDs), decreasing the device efficiency. To solve these problems, patterned sapphire substrates (PSSs) is a common technology.

In this research, we fabricated a series of PSSs by our wet etching method and E-beam lithography system. After the epitaxy via MOCVD system, we use micro-PL, micro-Raman system and X-Ray diffraction system to measure the MQWs TDs density, Bulk TDs density, and Compressive stress. We find that the MQWs TDs can be reduced when the Bottom C-plane shape pinch off to special “Engel Beak” or “Benz mark” shapes. In the device level we use Electro Luminescence (EL) for measurement. Demonstrating that efficiency droop can be reduced when bottom shape pinch off as well. After our analysis, the decreasing of efficiency droop should be attributed to the decreasing of MQWs TDs Density. Besides, we proved that cubic arrangement is better than hexagonal arrangement in PSS design. A detailed research of epitaxial model will be discussed in this thesis.


致謝 I
中文摘要 II
AbstractIII
目錄 IV
圖目錄 VI
表目錄 VIII
一、 導論 1
1.1 前言 1
1.2 動機 3
二、 理論基礎與材料分析 6
2.1 藍寶石基板簡介 6
2.2 氮化鎵薄膜簡介 9
2.2.1 晶體結構 9
2.2.2 應力 11
2.2.3 錯位差排 14
2.2.4 晶體成長 17
2.3 氮化鎵類發光二極體 20
2.3.1 V字形凹孔(V-pit)與區域位能障礙 20
2.3.2 極化 21
2.3.3 氮化鎵類發光二極體之效率衰減 24
2.4 拉曼光譜(Raman Spectrum)的量測原理 26
2.5 拉曼光譜選擇律(Selection Rule) 28
2.6 蝕刻原理 29
2.6.1 蝕刻種類 29
2.6.2 濕式時刻原理 31
2.7 光萃取率LEE 33
2.7.1 模擬軟體介紹 33
2.7.2 模擬參數設定 33
三、 實驗儀器與樣品製備 35
3.1 實驗儀器 35
3.1.1 電子束微影系統(E-Beam Lithography) 35
3.1.2 電子槍蒸鍍系統(E-Gun) 37
3.1.3 感應式耦和電漿蝕刻(ICP-RIE) 38
3.1.4 掃描式電子顯微鏡(SEM) 39
3.1.5 有機金屬化學氣象沉積(MOCVD) 40
3.1.6 光致激發螢光量測系統(µ-PL) 41
3.1.7 拉曼光譜量測系統(µ-Raman) 44
3.1.8 X-Ray繞射儀(XRD) 48
3.1.9 電致激發螢光光譜(EL)與積分球(IS)量測 54
3.2 樣品製備 55
四、 實驗結果與分析 61
4.1 實驗設計 61
4.2 量測分析(LED磊晶層) 67
4.2.1 樣品 主動層缺陷密度 比較與分析 67
4.2.2 樣品 磊晶層缺陷密度 比較與分析 69
4.2.3 樣品 內部應力 比較與分析 73
4.2.4 樣品篩選 76
4.3 量測分析(LED發光元件) 78
4.3.1 效率衰減(Efficiency Droop)比較 78
五、 結論 80
六、 參考資料 81


[1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-Brightness InGaN Blue , Green and Yellow Light-Emitting Diodes with Quantum Well Structures “,Jpn. J. Appl. Phys. 34, L797(1995).

[2]Amano, Hiroshi, et al. "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate." Thin Solid Films 163 (1988): 415-420.

[3]Watanabe, A., et al. "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer." Journal of crystal growth 128.1 (1993): 391-396.

[4]Dadgar, A., et al. "MOVPE growth of GaN on Si (111) substrates." Journal of Crystal Growth 248 (2003): 556-562.

[5]Waltereit, P., et al. "Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6Her."rate." it Applied physics letters 74.24 (1999): 3660-3662.

[6]Ning, X. J., et al. "Growth defects in GaN films on sapphire: The probable origin of threading dislocations." Journal of materials research 11.03 (1996): 580-592.

[7]Kozawa, T., et al. "Thermal stress in GaN epitaxial layers grown on sapphire substrates." Journal of applied physics 77.9 (1995): 4389-4392.

[8]Liu, Zhiqiang, et al. "Efficiency droop in InGaN/GaN multiple-quantum-well blue light-emitting diodes grown on free-standing GaN substrate." Applied Physics Letters, 99.9 (2011): 091104.

[9]Yusuke Yoshizumi*, et al. “Advantages of Employing the Freestanding GaN Substrates with Low Dislocation Density for White Light-Emitting Diodes” SEI TECHNICAL REVIEW, ELECTRONICS, October 2012 No.75.

[10]Piprek, Joachim. "Efficiency droop in nitride‐based light‐emitting diodes."physica status solidi (a) 207.10 (2010): 2217-2225.

[11]Heying, B., et al. "Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films." Applied Physics Letters 68.5 (1996): 643-645. pp.643

[12]Takeuchi, Tetsuya, et al. "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells." Japanese Journal of Applied Physics36.4A (1997): L382.

[13]Morkoc, Hadis. Nitride semiconductors and devices. Vol. 32. Springer Science & Business Media, 2013.

[14]Chen, Jian-Jhong, et al. "Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates." Photonics Technology Letters, IEEE 20.13 (2008): 1193-1195.

[15]Gao, Haiyong, et al. "Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching."Solid-State Electronics52.6 (2008): 962-967.

[16]Shin, Hui-Youn, et al. "Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate."Journal of Crystal Growth311.17 (2009): 4167-4170.

[17]Feng, Z. H., et al. "GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy."Journal of crystal growth272.1 (2004): 327-332.

[18]Chakraborty, Arpan, et al. "Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak."Applied physics letters85 (2004): 5143.

[19]Ambacher, O., et al. "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures."Journal of Applied Physics85.6 (1999): 3222.

[20]Ambacher, O., et al. "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures."Journal of applied physics87.1 (2000): 334-344.

[21]Zhuang, D., and J. H. Edgar. "Wet etching of GaN, AlN, and SiC: a review."Materials Science and Engineering: R: Reports48.1 (2005): 1-46.

[22]Collazo, R., et al. "Growth of Ga-and N-polar gallium nitride layers by metalorganic vapor phase epitaxy on sapphire wafers." Journal of crystal growth 287.2 (2006): 586-590.

[23]Mishra, Umesh K., Primit Parikh, and Yi-Feng Wu. "AlGaN/GaN HEMTs-an overview of device operation and applications." PROCEEDINGS-IEEE 90.6 (2002): 1022-1031.

[24]Mathis, S. K., et al. "Modeling of threading dislocation reduction in growing GaN layers." Journal of Crystal Growth 231.3 (2001): 371-390.

[25]Hino, T., et al. "Characterization of threading dislocations in GaN epitaxial layers." Applied Physics Letters 76.23 (2000): 3421-3423.

[26]Lu, L., et al. "Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition." Journal of Applied Physics104.12 (2008): 123525.

[27]Kapolnek, D., et al. "Anisotropic epitaxial lateral growth in GaN selective area epitaxy." Applied physics letters 71.9 (1997): 1204-1206.

[28]Zhang, Wei, et al. "Dislocation reduction through nucleation and growth selectivity of metal-organic chemical vapor deposition GaN." Journal of Applied Physics 113.14 (2013): 144908.

[29]Kamimura, Jumpei, Katsumi Kishino, and Akihiko Kikuchi. "Dislocation reduction via selective-area growth of InN accompanied by lateral growth by rf-plasma-assisted molecular-beam epitaxy." Applied Physics Letters 97.14 (2010): 141913.

[30]Nam, Ok-Hyun, et al. "Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy." Applied physics letters 71.18 (1997): 2638-2640.

[31]Zhang, Wei, et al. "Dislocation reduction through nucleation and growth selectivity of metal-organic chemical vapor deposition GaN." Journal of Applied Physics 113.14 (2013): 144908.

[32]Sakai, Akira, Haruo Sunakawa, and Akira Usui. "Defect structure in selectively grown GaN films with low threading dislocation density." Applied Physics Letters 71 (1997): 2259-2261.

[33]Hangleiter, A., et al. "Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency." Physical review letters 95.12 (2005): 127402.

[34]Bernardini, Fabio, Vincenzo Fiorentini, and David Vanderbilt. "Spontaneous polarization and piezoelectric constants of III-V nitrides." Physical Review B56.16 (1997): R10024.

[35]Vampola, Kenneth J., et al. "Measurement of electron overflow in 450 nm InGaN light-emitting diode structures." Applied Physics Letters 94.6 (2009): 061116.

[36]Kim, Min-Ho, et al. "Origin of efficiency droop in GaN-based light-emitting diodes." Applied Physics Letters 91.18 (2007): 183507.

[37]Hader, J., J. V. Moloney, and S. W. Koch. "Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes."SPIE OPTO. International Society for Optics and Photonics, 2011.

[38]Kim, Jaekyun, et al. "Influence of V-pits on the efficiency droop in InGaN/GaN quantum wells." Optics express 22.103 (2014): A857-A866.

[39]Wang, Chien-Chun, et al. "Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure."Applied Physics Letters91.12 (2007): 121109.

[40]Gao, Haiyong, et al. "Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale."Journal of Applied Physics103.1 (2008): 014314.

[41]Lee, Tsung-Xian, et al. "Light extraction analysis of GaN-based light-emitting diodes withsurface texture and/or patterned substrate."Optics Express15.11 (2007): 6670-6676.

[42]Davydov, V. Yu, et al. "Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC." Journal of applied physics 82.10 (1997): 5097-5102.

[43]Kim, Y. H., et al. "Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study." Journal of Applied Physics 107.6 (2010): 063501.

[44]Efremov, A. A., et al. "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs."Semiconductors 40.5 (2006): 605-610.

[45]X. H. Zheng, H. Chen, Z. B. Yan, Y. J. Han, H. B. Yu, D. S. Li, Q. Huang, and J.M. Zhou, J. Cryst. Growth 255, 63 (2003).

[46]P. Gay, P. B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).

[47]E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, J. Phys. D : Appl. Phys. 41, 155317 (2008).

[48]Scott A. Speakman, Ph.D. ” Basics of X-Ray Powder Diffraction.” http://prism.mit.edu/xray, MIT (2016).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊