跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛植函
研究生(外文):Chih-Han Hsueh
論文名稱:利用第一原理模擬四元半導體銻磷砷化銦的能帶結構
論文名稱(外文):First-Principle Calculations of Band Structures of InAsPSb
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
口試委員:王智祥毛明華金宇中王禎翰
口試委員(外文):Jyh-Shyang WangMing-Hua MaoJason ChinJeng-Han Wang
口試日期:2016-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:59
中文關鍵詞:第一原理銻磷砷化銦雜化泛函能隙能帶結構
外文關鍵詞:first-principlesInAsPSbHybrids functionalband-gapband-structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用第一原理軟體V.A.S.P.模擬四元合金銻磷砷化銦的能帶結構,並以雜化泛函(hybrids function)與自旋耦合效應(spin-orbit coupling effect)加以修正,模擬二元合金砷化銦、磷化銦與銻化銦的能帶結構,得能隙結果為0.416、1.325、0.178(eV),費米能量為2.979、3.211與3.823(eV)
模擬不同成份的銻磷砷化銦((In4P3Sb1, In4As1P2Sb1, In4As2P1Sb1),得到的能隙為0.610、0.457、0.225(eV),費米能量為3.507、3.613與3.259(eV)。
In4As0P3Sb1中,當銻原子加入磷化銦中時,使費米能量上升,導電帶能量下降,能隙變小;在In4As1P2Sb1中,從In4As0P3Sb1中再加入一顆砷原子,因為砷原子的加入,使原子的排列變混亂,使費米能量提高,導電帶則維持在銻化銦附近;在In4As2P1Sb1中,因為在砷化銦中摻雜磷與銻原子,使費米能量提升,但與同樣為四元材料In4As1P2Sb1相比,發現費米能量卻降低許多,是因為砷的原子半徑較磷原子大,因為晶格內部的排列較不易混亂。
實驗中,摻雜銻原子後會使能隙下降,但經由態密度分析,發現銻原子在導電帶最低點並不提供態密度。


We simulate the bandstructure of binary alloy InAs, InP, InSb and quaternary alloy InAsPSb (InAs0P3Sb1, In4As1P2Sb1, In4As2P1Sb1) by using the simulation package, V.A.S.P., and we use hybrids function and consider spin-orbit coupling effect to correct the bandgap. The result of binary alloy are 0.416, 1.325, 0.178(eV), and quaternary alloy are 0.610, 0.457, 0.225 (eV). The Fermi energy by simulation is 2.979, 3.211 and 3.823(eV) for binary alloy InAs, InP and InSb, and the Fermi energy of quaternary alloy is 0.610, 0.457, 0.255(eV).
In In4As0P3Sb1, when antimonide is doped in indium phosphide, it causes the raise of Fermi energy, and the conduction band goes down to get closer to the indium antimonide, In In4As1P2Sb1, we find the Fermi energy rises more, but the indium arsenide’s Fermi energy is lowest among of binary alloy. We speculate it is because of the adding of arsenide, making the atoms in the crystal more mess than In4As0P3Sb1. The conduction band still hangs around indium antimonide; In In4As2P1Sb1, phosphide and antimonide are doped in indium arsenide, making the raise of Fermi energy, but its Fermi energy is lower than In4As1P2Sb1. We speculate it is because the atom in crystal is neater than In4As1P2Sb1.
In analysis of density of states, antimonide will make bandgap go down, but it will not provide any states in conduction band around the bandgap.


摘要……………………………………………………………………………………i
Abstract………………………………………………………………………………ii
目錄……………………………..……………………………..……………………iii
圖目錄………………………………..……………………………..……………….iv
表目錄……………………………………………………………………………….vii
第一章 緒論…………………………………..…….………………….……..………1
1.1三五族半導體介紹……………….………………………..……………1
1.2銻磷砷化銦材料發展過程……….…………………….……………….2
第二章 計算理論介紹……………………………………..…………………………4
2.1 DFT理論介紹…………………….………………..…………………..4
2.2 Exchange-Correlation Function……………………...…………………9
2.3 雜化泛函(Hybrids function)…………..…………………………..10
2.4 自旋軌道耦合效應 (Spin-orbit coupling effect)……………..…..11
2.5 贗勢 Pseudo-potential………………………………..………………13
第三章 計算系統與方法………………………………..…………….…………….14
3.1模擬環境………………………………...…..…………………………14
3.2操作軟體 Vienna Ab-initio Simulation Package(VASP)…...14
3.3計算參數設定………………………………..………………...………15
3.4 輸出檔案介紹………………………………..………….…………….24
第四章 結果與討論……………………………………..…………………………..28
4.1 模擬二元合金砷化銦、磷化銦與銻化銦的態密度與能帶分析……28
4.2 模擬四元合金銻磷砷化銦的態密度與能帶分析(8顆)………….42
第五章 結論………………………………..…………..……………………………53
參考資料…………………..………………..………………………………55


[1]Z. H. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G.B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys., vol 67, pp.7034-7039, 1990.
[2]E. H. Reihlen, M. J. Jou, Z. M. Fang and G. B. Stringfellow,
“Optical absorption and emission of InP1-xSbx alloys,” J. Appl. Phys., vol 68, pp. 4604-4609, 1990.
[3]E. R. Gertner, D. T. Cheung, A. M. Andrews, and J. T. Longo, “Liquid phase epitaxtal growth of InAsxSbyP1-x-y layers on InAs,” J. Electron. Mater., vol 6, pp. 163-170,1997.
[4]Takashi Fukui, and Yoshiji Horikoshi, “DH lasers fabricated by new III-V semiconductor material InAsPSb,” Jpn. J. Appl. Phys., vol 19, pp. L641-L644, 1980.
[5] H. Mani, A. Joullie, G. Boissier, E. Tournie, F. Pitard, A. M. joullie, and C. Albert, “New III-V double-heterojunction laser emitting near 3.2um,” Electron. Lett., vol, 24, pp 1542-1543, 1988.
[6]H. Mani, E. Tournie, J. L. Lazzari, C. Alibert, and A. Joullie, “Liquid phase epitaxy and characterization of InAs1-x-ySbxPy on (100) InAs,” J. Cryst. Growth, vol. 121, pp. 463-472, 1992.
[7] A. Krier, and Y. Mao, “2.5um light-emitting diodes in InAs0.36Sb0.20P0.44/InAs for HF detection,” IEE. Proc. Optoelectron, vol. 144, pp. 355-359, 1998.
[8]A. Krier, and V. V. sherstnev, “Powerful interface light emitting diodes for methane gas detection,” J.Phys. D: Appl. Phys. Vol. 33, pp 101-106, 2000.
[9] Xiu Ying Gong, Tomuo Yamaguchi, Hirofumi Kan, Takamitsu Makino, Takefumi Iida, Takayoshi Kato, Mitsuru Aoyama, Yasuhiro Hayakawa, and Masashi Kumagaqa “Room temperature InAsPSb/InAs Photodetectors with High Quantum Efficiency,” Jpn. J. Appl. Phys., vol 36, pp. 2614-2616, 1997.
[10] A. Stein, A. Behres, and K. Heime, “InAs(P,Sb)/InAsSb LEDs emitting in the 3-4 um range at room temperature,”11th Indium Phosphide and Related Materials, pp, 95-98,1999.
[11] P. Christol, P. Bigenwald, A. Wilk, A. Joullie, O. Golard, H. Carrere, F. Lozes-Dupuy, A. Behres, A. Stein, J.Kluth, K. Heime, and E. M. skouri “InAs/InAs(P,Sb) quantum-well laser structure for the midwavelength infrared region,” IEE. Proc. Optoelectron, vol. 147, pp.181-187, 2000.
[12] A. Krier, Z. Labadi, and A. Hammiche, “InAsSbP quantum dots grown by liquid phase epitaxy,” J. Phys. D: Appl. Phys., vol. 32, pp. 2587-2589, 1999.
[13] Richard M. Martin, “Electronic Structure Basic Theory and Practical Methods”First Published 2004.
[14] P.hohnberg. and W. Kohn, Phys. Pev., 136(3B), B864(1964)
[15] W.Kphn, and L.J. Sham, Phys. Rev., 140(4A), A1133(1965)
[16] John P. Perdew, Kieron Burke, Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple” Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.
[17] Matthias Ernzerhof, Gusravo E. Scuseria, ”Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional” J. Chem. Phys., vol. 110, pp. 5029-5036, 1998.
[18] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, “Screened hybrid density functionals applied to solids” J. Chem. Phys., vol. 124, pp. 154709-1-154709-13, 2006.
[19] Jonathan E. Moussa, Peter A. Schultz, and James R. Chelikowsky, “Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space” J. Chem. Phys., vol. 136, pp. 204117-1-204117-10, 2012.
[20] Yoon-Suk Kim, Martijn Marsman, and Georg Kresse, “Towards efficient band structure and effectice mass calculations for III-V direct band-gap semiconductors” Phys. Rev. B., vol. 82, 205212-1-205212-11, 2010.
[21] John P. Perdew and Matthias Ernzerhof, “Rationale for mixing exact exchange with density functional approximations”, J. Chem. Phys. Vol. 105, No. 22, pp. 9982-9985, 1996.
[22] Juan E. Peralta, Jochen Heyd, and Gustavo E. Scuseria, “Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screenes hybrid functional”, Phys. Rev. B., vol. 74, pp. 073101-1-073101-4, 2006.
[23] Georg Kresse, Martijn Marsman, and J‥urgen Furthm‥uller, “VASP the GUIDE”, 2014
[24] Yoon-Suk Kim, Kerstin Hummer, and Georg Kresse, “Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals”, Phys. Rev. B., vol. 80, pp. 035203-1-035203-9, 2009
[25] Kwiseon Kim, Gus L. Hart, and Alex Zunger, “Negative band gap bowing in epitaxial InAsOGaAs alloys and predicted band offsets of the strained binaries and alloys on various substrates “, Appl. Phys. Let., vol. 80, pp. 3105-3107, 2002
[26]Dmitry Bocharov, Alexei Kuzmin, Juris Purans, and Yuri Zhukovskii, “Quantum chemistry studies of the O K-edge X-ray absorption in WO3 and AWO3”, 2010
[27] Elena Voloshina, Roman Ovcharenko, Alexander Shulakov, and Yuriy Dedkov, “Theoretical description of X-ray absorption spectroscopy of the graphene-metal interfaces”, J. Chem. Phys., vol. 138, pp.154706-1-8,2013
[28] Hidenobu Murata, Takashi Taniguchi, Shunichi Hishita, Tomoyuki Yamamoto, Fumiyasu Oba, and Isao Tanaka, “Local environment of silicon in cubic boron nitride” J. Appl. Phys., vol. 114, pp. 233502-1-4, 2013
[29] Mu-chi Liu, Zhe Chuan Feng, Hao-Hsiung Lin, “X-ray Absorption Near Edge Structure of Silicon in Indium Arsenide”,Optic 2014, 2014
[30] Jiraroj T-Thienprasert, Saaroj Rujirawat, Jiti Nukeaw, Sukit Limpijumning, “X-ray absorption spectroscopy of indium nitride, indium oxide, and their alloys”, Compuational Materials Science, vol. 49, pp. s37-s42, 2010


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊