(3.235.41.241) 您好!臺灣時間:2021/04/11 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏銘億
研究生(外文):Ming-Yi Yan
論文名稱:多層膜結構二極記憶體之研究
論文名稱(外文):A Study of Diode Memory with Multi-Layer Structures
指導教授:彭隆瀚
指導教授(外文):Lung-Han Peng
口試委員:李峻霣陳奕君黃玉林賴志明
口試委員(外文):Jiun-Yun LiI-Chun ChengYue-Lin HuangChih-Ming Lai
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:二極體記憶體金屬氧化物
外文關鍵詞:diodememorymetal oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一個具有新式相變化的操作機制與材料,操作原理結合了傳統相變化記憶體的基本特性,以及電子共振穿隧二極體的負微分電阻的特性。而選用的材料則與傳統的相變化材料不同,乃利用電漿輔助型原子層沉積系統成長金屬氧化物(氧化鉿、氧化鋅、氧化鎵),並堆疊成雙能障量子井的結構。
本論文主要分為兩部分。第一部分為記憶體元件之製作,包含了電漿輔助型原子層沉積系統的原理與操作、沉積材料成長速率之校正、X射線光電子能譜特性分析,以及元件完整的製程。第二部分為記憶體元件之電性量測,包含了相變化特性曲線、轉換臨界功率的比較、寫入(Set)與重置(Reset)的關係及壽命讀寫次數的量測。
我們用電漿輔助型原子層沉積系統沉積了HfO2/ZnO/HfO2 (2/4/2及2/6/2 nm)和Ga2O3/ZnO/HfO2 (4/2/4、4/3/4及4/4/4 nm)兩種結構,並製作四種元件面積,625π、3025π、7225π及11025π平方微米,發現在Ga2O3/ZnO/HfO2為4/2/4且面積為625π〖 μm〗^2時有較佳的特性。其有較小的轉換臨界功率(約為2.6mW),元件的電阻開關比可達1000倍,抹寫次數可達超過100次。


In this thesis, we demonstrate a new device mechanism and material system for realizing phase change memory (PCM). We combine two device concepts into one single device, i.e., phase change memory and resonant tunneling diode. Metal oxide were used as the phase changing material, unlike the conventional GeSbTe material. Our devices was prepared by the Plasma-Enhanced Atomic Layer Deposition (PEALD) system, with a double-barrier quantum-well structure.
There are two main parts in this thesis. First, we introduce how to make our memory device, including the mechanism and operation of PE-ALD, the calibration of growth rate and X-ray photoelectron spectroscopy analysis of each material, and the whole device fabrication process. Second, we discuss the electrical measurements, including characteristic I-V curves, comparison of threshold powers for phase change, relationship between set and reset conditions, and life-time cycling test.
Oxide stacks of HfO2/ZnO/HfO2 (2/4/2, 2/6/2 nm) and Ga2O3/ZnO/HfO2 (4/2/4, 4/3/4 and 4/4/4 nm) were deposited by PE-ALD, and devices of 625π, 3025π, 7225π and 11025π 〖μm〗^2 were fabricated. We found that Ga2O3/ZnO/HfO2 (4/2/4) device of area 625π 〖μm〗^2 has the best properties for PCM device: lowest threshold power of ~ 2.6 mW, highest resistance on/off ratio of ~ 1000, and more than 100 times operation in life-time cycling test.


Chapter 1 緒論 1
1.1 非揮發性記憶體簡介 1
1.2 相變化記憶體的發展與概況 2
1.3 研究動機與論文概述 7
1.3.1 研究動機 7
1.3.2 論文概述 8
Chapter 2 二極記憶體元件之原理 9
2.1 相變化記憶體的操作原理 9
2.2 共振穿隧式二極體的基本理論 13
Chapter 3 二極記憶體的元件製作 15
3.1 原子層沉積系統 Atomic Layer Deposition 15
3.1.1 ALD技術發展沿革 16
3.1.2 ALD成長機制 17
3.1.3 ALD成長模式概述 20
3.2 PE-ALD機台架構及材料分析 23
3.2.1 機台架構 23
3.2.2 PE-ALD氧化物材料測試與分析 28
3.3 二極記憶體元件製作流程 36
Chapter 4 二極記憶體元件之電性量測 45
4.1 量測系統架構與方法 45
4.1.1 量測系統架構 45
4.1.2 量測方法簡介 46
4.2 二極記憶體元件量測結果 47
4.2.1 電壓-電流特性曲線 49
4.2.2 臨界功率的數據比較 52
4.2.3 負向脈衝電流的寫入與正向脈衝電壓的重置 55
4.2.4 記憶體元件壽命讀寫量測 57
Chapter 5 結論與未來展望 62
參考資料 64

[1] 李明道, 新式非揮發性記憶體之發展與挑戰, 奈米通訊, 21卷, No. 3, 國家奈米元件實驗室.
[2] Ovshinsk. S. R., "Reversible Electrical Switching Phenomena in Disordered Structures, " Physical Review Letters, vol. 21, pp. 1450, 1968.
[3] J. H. Coombs, A. P. J. M. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, "La-ser-Induced Crystallization Phenomena in GeTe-Based Alloys .1. Characterization of Nucleation and Growth," Journal of Applied Physics, vol. 78, pp. 4906-4917, Oct 15 1995.
[4] L. Chain-Ming, Y. Wen-Shin, C. Jung-Po, and C. Tsung-Shune, "Performances of phase-change recording disks based on GaSbTe media," Magnetics, IEEE Transac-tions on, vol. 41, pp. 1022-1024, 2005.
[5] M. Chen, K. A. Rubin, and R. W. Barton, "Compound Materials for Reversible, Phase-Change Optical-Data Storage," Applied Physics Letters, vol. 49, pp. 502-504, Sep 1 1986.
[6] F. Bedeschi, R. Bez, C. Boffino, E. Bonizzoni, E. C. Buda, G. Casagrande, L. Costa, M. Ferraro, R. O. Gastaldi, S. Khouri, F. Ottogalli, F. Pellizzer, A. Pirovano, C. Resta, G. Torelli, and M. Tosi, "4-Mb MOSFET-selected mu trench phase-change memory experimental chip," Ieee Journal of Solid-State Circuits, vol. 40, pp. 1557-1565, Jul 2005.
[7] S. Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matsui, N. Matsuzaki, N. Takaura, M. Moniwa, and T. Kawahara, "A 512kB Embedded Phase Change Memory with 416kB/s Write Throughput at 100Å Cell Write Current," in Solid-State Circuits Con-ference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International 2007, pp. 474-616.
[8] Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb," in Electron Devices Meeting, 2006. IEDM ''06. Inter-national, 2006, pp. 1-4.
[9] Samsung Electronics, Hwasung, Korea , Byung Hoon Jeong ; ByungJun Min ; Youngdon Choi ; Beak-Hyung Cho ; Junho Shin ; Jinyoung Kim; Jung Sunwoo ; Joon-min Park ; Qi Wang ; Yong-jun Lee ; Sooho Cha ; Dukmin Kwon ; Sangtae Kim; Sunghoon Kim ; Yoohwan Rho ; Mu-Hui Park ; Jaewhan Kim ; Ickhyun Song ; Sunghyun Jun ;Jaewook Lee ; KiSeung Kim ; Ki-won Lim ; Won-ryul Chung ; ChangHan Choi ; HoGeun Cho ; Inchul Shin ; Woochul Jun ; Seokwon Hwang ; Ki-Whan Song ; KwangJin Lee ; Sang-whan Chang ; Woo-Yeong Cho ; Jei-Hwan Yoo ; Young-Hyun Jun, "A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW , " IEEE International Solid-State Circuits Con-ference, pp500 – 502 Feb. 2011.
[10] Samsung Electronics, Hwasung, Korea , Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang, Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo, Junho Shin, Yoohwan Rho, Changsoo Lee, Min Gu Kang, Jaeyun Lee, Yongjin Kwon, Soehee Kim, Jaehwan Kim, Yong-Jun Lee, Qi Wang, Sooho Cha, Sujin Ahn, Hideki Horii, Jaewook Lee, Kisung Kim, Hansung Joo, Kwangjin Lee, Yeong-Taek Lee, Jeihwan Yoo, Gitae Jeong, "A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth , " IEEE International Solid-State Circuits Conference, pp46 – 48 Feb. 2012
[11] Western Digital’s HGST division creates new phase-change SSD that’s orders of magnitude faster than any NAND flash drive on the market.
[12] Peter Clarke, “Patent Search Supports View 3D XPoint Based on Phase-Change “
[13] Gaskill, Michael, et al. "High Power Gunn Diode Oscillators." (2004).
[14] M. Wuttig, “Phase-change materials. Towards a universal memory?” Nature Materi-als, vol. 4, pp. 265-266, Apr2005.
[15] A. Madan and M.P. Shaw, The Physics and Application of Amorphous Semicon-ductors, Academic Press, San Diego, (1988), p.318.
[16] Stanford R. Ovshinsky, Disordered Materials: Science and Technology. Springer Science & Business Media, 2012, p.313.
[17] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, Low-field amorphous state resistance and threshold voltage drift in chalcogenide ma-terials,[ IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 714–719, May 2004.
[18] Sung Soon Kim, Seong Min Jeong, Keun Ho Lee, Young Kwan Park, Young Tae Kim, Jeong Taek Kong and Hong Lim Lee, “Simulation for Reset Operation of Ge2Sb2Te5 Phase-Change Random Access Memory”, Jpn. J. Appl. Phys., 44(2005), p.5943-5948.
[19] Sun, Jian Ping, et al. "Resonant tunneling diodes: models and properties. "Proceed-ings of the IEEE 86.4 (1998): 641-660.
[20] http://userweb.eng.gla.ac.uk/douglas.paul/RTD.html
[21] M.K. Jackson, et al. "Electron tunneling time measured by photoluminescence exci-tation correlation spectroscopy." Applied physics letters 54.6 (1989): 552-554.
[22] R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
[23] Solid State Technology, March 1, 2007
[24] H. Kim, A. J. Kellock, and S. M. Rossnagel, “J. Appl. Phys.” 92, 7080 (2002).
[25] Y. J. Lee and S. W. Kang, “J. Vac. Sci.” Technol. A 20, 1983 (2002).
[26] S. M. Rossnagel, A. Sherman, and F. Turner, “J. Vac. Sci.” Technol. B 18, 2016 (2000).
[27] Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007.- Proefschrift.
[28] S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 25, 1357 (2007).
[29] 李柏廷, “電漿輔助型原子層沉積之發光二極體特性研究”, 國立台灣大學光電工程學研究所碩士論文(2014).
[30] R. Al-Gaashani, S.Radiman, A.R.Daud, N.Tabet, Y.Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods”, Ceramics International 39 (2013) 2283–2292
[31] Seokhoon Kim, Sanghyun Woo, Hyungchul Kim, Hyeongtag Jeon, “Atomic Layer Deposition of HfO2 Thin Films on Ultrathin SiO2 Formed by Remote Plasma Oxida-tion” Journal of the Korean Physical Society, Vol. 52, No. 4, April 2008, pp. 1103_1108
[32] Jaehyoung Koo, Seokhoon Kim, Sangmin Jeon, Hyeongtag Jeon, Yangdo Kim and Youngdo Won, “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plas-ma-Enhanced Atomic-Layer Deposition Method” Journal of the Korean Physical So-ciety, Vol. 48, No. 1, January 2006, pp. 131_136
[33] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, "Hand-book of X-ray photoelectron spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", Physical Electronics, 1995.
[34] 蘇水祥, “矽晶圓清洗製程”,電子工程學系/所,義守大學.
[35]https://en.wikipedia.org/wiki/Transparent_conducting_film
[36] 王崧豊, “銦鎵系氧化物相變化記憶體與薄膜電晶體元件之研製”, 國立台灣大學光電工程學研究所博士論文(2010).
[37] Kim, Hyoungsub, Paul C. McIntyre, and Krishna C. Saraswat. "Effects of crystalli-zation on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition." Applied physics letters 82.1 (2003): 106-108.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔