跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳燕玲
研究生(外文):Yen-Ling Chen
論文名稱:臺灣造山帶地震活動的頻率規模分布及其與地殼變形和應力架構之相關性研究
論文名稱(外文):Study of the earthquake frequency-magnitude distribution and its relation with crustal deformation and stress state in the Taiwan orogeny
指導教授:洪淑蕙
指導教授(外文):Shu-Huei Hung
口試委員:喬凌雲郭本垣龔源成梁文宗
口試委員(外文):Ling-Yun ChiaoBan-Yuan KuoYuancheng GungWen-Tzong Liang
口試日期:2016-06-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:122
中文關鍵詞:臺灣造山帶頻率規模分布地殼變形震源機制
外文關鍵詞:Taiwan orogenyfrequency-magnitude distributioncrustal deformationfocal mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們使用臺灣中央氣象局地震觀測網地震目錄的343,581地震與2,640個地震震源機制解,用以描繪臺灣地震頻率規模分布與地震b值之空間變化,研究其與斷層錯動類型與地殼應力型態的相關性。地震b值的估計結果顯示,在95%的信賴區間內,各類震源機制的地震b值顯然存在著明顯的差異,逆斷層b值最低(0.82±0.02),走向滑移斷層b值居於中間(0.89±0.03),正斷層b值最高(1.03±0.09),所得結果與全球和其他區域得到相當一致的地震觀察結果。
我們估算臺灣三種震源機制型態的地震b值結果顯示,具有非常顯著的差異,其中逆斷層錯動型態的震源機制具有最低的的地震b值,走向滑移斷層錯動型態具有中間值,正斷層錯動型態具有最高的地震b值,這個結果與全球性或區域性地震活動的相關研究都有很好的一致性。在地震b值的側向分布研究顯示,其與主要的斷層錯動機制、地殼變形及應力型態都有非常良好的相關性。臺灣在強大的東西向縮短與差異應力作用下,造成在東臺灣和西臺灣的兩個南北走向的逆衝斷層帶,其具有較低的地震b值;在中臺灣狹長南北向的山脈內或山脈間,受到較小的拉張應力作用,主要受到走向滑移和正斷層作用,其具有較高的地震b值。在地震b值的深度分布研究顯示,地震b值隨深度單調遞減至大約於15-20公里深度終止, 顯示地震b值與應力呈現反比關係,並且證實在臺灣造山帶底下具有弱質中部地殼,並存在一層脆塑性的轉變帶。
簡言之,本研究首先驗證在臺灣造山帶之地震b值與斷層錯動型態及地殼應力同樣具有通用的對應相關。區域地震b值的變化與地殼變形及應力架構的良好相關性,充分顯現了區域的震源構造特性。隨震源深度變化的地震b值顯示,臺灣底下的弱質中部地殼,在約15-20公里深度,存在一層脆塑性的轉換帶。

We analyze 343,581 earthquakes and 2,640 focal mechanisms from reprocessed CWB event catalog of Taiwan to map spatial variations of their frequency-magnitude distribution, i.e., b-value, and explore its possible dependence on faulting type and stress pattern within the crust in and around Taiwan. The b values estimated from three basic faulting types of the seismicity in the entire investigation region show significant differences in a 95% confidence interval, with the lowest of 0.82±0.02 for thrust, the intermediate of 0.89±0.03 for strike-slip, and the highest of 1.03±0.09 for normal events, which are consistent with those observed for worldwide and regional seismicity.
We investigate the correlation of the earthquake frequency-magnitude distribution with the style of faulting and stress in Taiwan. The b-values estimated for three types of focal mechanisms show significant differences with the lowest for thrust, intermediate for strike-slip, and highest value for normal events, consistent with those found in global and other regional seismicity. Lateral distribution of the b-values shows a good correlation with the predominant faulting mechanism, crustal deformation and stress patterns. The two N-S striking thrust zones in western and eastern Taiwan under the larger E-W shortening and differential stress yield the lower b-values than those in the in-between mountain ranges subject to the smaller extensional stress and dominated by strike-slip and normal faults. The termination of the monotonically decreasing b-value with depth at ~15-20 km corroborates its inverse relationship with stress and the existence of the brittle-plastic transition in the weak middle crust beneath the Taiwan orogen.
In summary, general dependence of the b-value with the style of faulting and stress is first verified in the Taiwan orogen. Regional b-value variations correlate well with the crustal deformation and stress regimes manifested from the local tectonics. The depth-varying b-value reveals the brittle-plastic transition at ~15-20 km and a weak middle crust under Taiwan.

目錄
口試委員會審定書... i
誌謝... ii
摘要... iii
Abstract... iv
第一章 緒論... 1
1.1 研究動機與文獻回顧... 1
1.2 本文內容大綱... 13
第二章 研究資料與方法... 15
2.1 地震觀測網之觀測效能分析... 17
2.1.1 地震觀測網之完整規模分析... 20
2.1.2 地震定位之誤差分析... 31
2.2 地震震源機制資料... 38
2.3 研究方法... 46
2.3.1 地震群集法... 46
2.3.2 震源疊合法... 47
2.3.3 雙差分地震定位... 48
2.3.4 主分量分析法... 48
2.3.5 震源機制分類... 49
2.3.6 總和震矩張量... 50
2.3.7 地震頻率規模分布... 51
第三章 地震頻率規模分布與應力架構之相關性... 53
3.1 地震b值與震源機制之相關性... 60
3.2 地震b值側向變化及其與震源機制相關性... 60
3.3 地震b值深度變化及其與地殼強度相關性... 77
3.4 結果與歸納... 85
第四章 臺灣顯著地震發震構造之時空分布與發震特性... 87
4.1 地震群頻率規模分布與震源機制相關性分析... 89
4.2 1999年集集與2002年宜蘭地震群之發震特性分析... 95
4.3 臺東區域2003-2006年明顯地震群之發震特性分析... 99
4.4 花蓮區域2009與2013年明顯地震群之發震特性分析... 103
4.5 2010年高雄甲仙與2012年屏東霧台地震群之發震特性分析... 103
4.6 1991-1995年明顯地震群之發震特性分析... 106
4.7 2006年屏東雙震地震群之發震特性分析... 109
4.8 2013年南山地震群之發震特性分析... 112
第五章 結論與討論... 114
參考文獻... 116 


Aki, K. (1965), Maximum likelihood estimate of b in the formula log (N) = a − bM and its confidence limits, Bull. Earthq. Res. Inst. Tokyo Univ., 43, 237-239.
Aki, K. (1984), Asperities, Barriers, Characteristic Earthquakes and Strong Motion Prediction, Journal of Geophysical Research 89, 5867–5872.
Aki, K., and P. G. Richards (2002), Quantitative Seismology, 2nd ed., University Science Books, Sausalito, California, 37-62.
Angelier, J., E. Barrier, and H.-T. Chu (1986), Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan., Tectonophysics, 125, 161-178.
Asanuma, H., Ishimoto, M., Jones, R. H., Niitsuma, H., and Phillips, W. S., (2001), A variation of the collapsing method to delineate structures inside a microseismic cloud, Bulletin of the Seismological Society of America, 91,154-160.
Bevington, P. R., and D. K. Robinson (1992), Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed., McGraw-Hill.
Biq, C. (1972), Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China., 15, 65-75.
Carena, S., J. Suppe, and H. Kao (2002), Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geological Society of America., 30(10), 935-938.
Chan, C.-H., and Y.-M. Wu (2013), Maximum magnitudes in aftershock sequences in Taiwan, Journal of Asian Earth Sciences, 73, 409-418.
Chang, C.-P., T.-Y. Chang, J. Angelier, H. Kao, J.-C. Lee, and S.-B. Yu (2003), Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data, Earth and Planetary Science Letters, 214(1-2), 115-127.
Chen, Y.-L., S.-H. Hung, J.-S. Jiang, and L.-Y. Chiao (2016), Systematic correlations of the earthquake frequency-magnitude distribution with the deformation and mechanical regimes in the Taiwan orogen, Geophysical Research Letters, 43(10), 5017-5025.
Chiao, L.-Y., and Q. Liu (2014), Dependence of sandpile avalanche frequency–size distribution on coverage extent and compactness of embedded toppling threshold heterogeneity: implications for the variation of Gutenberg–Richter b value, Nonlinear Processes in Geophysics., 21(6), 1185-1193.
Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration Magnitude Uncertainty due to Seismic Noise: Inferences on the Temporal Pattern of G-R b-value at Mt. Vesuvius, Italy, Bulletin of the Seismological Society of America, 93(4), 1847-1853.
Frohlich, C. (1992), Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms, Physics of the Earth and Planetary Interiors, 75, 193-198.
Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bulletin of the Seismological Society of America, 34(4), 185-188.
Herrmann, R. B. (1975), A student''s guide to the use of P and S wave data for focal mechanism determination. Earthquake notes, 46, 29-39.
Ho, C. S. (1988), An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, 192 pp., Min. of Econ. Aff., Taipei, Taiwan, Republic of China.
Jackon, J., and D. Mckenzie (1988), The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophysical Journal, 93, 45-73.
Jones, R. H., and R. C. Stewart (1997), A method for determining significant structures in a cloud of earthquakes, Journal of Geophysical Research, 102, 8245-8254.
Jost, M. L., and R. B. Herrmann (1989), A student''s guide to and review of moment tensors, Seismological Research Letters, 60, 37-57.
Kagan, Y. Y., and D. D. Jackson (1999). Worldwide doublets of large shallow earthquakes. Bulletin of the Seismological Society of America 89, 1147-1155.
Kanamori, H.(1993) Locating earthquakes with amplitude:application to real-time seismology, Bulletin of the Seismological Society of America, 83, No. 1, 264-268.
Kanamori, H., and D. L. Anderson (1975), Theoretical basis of some empirical relations in seismology, Bulletin of the Seismological Society of America, 65(5), 1073-1095.
Kao, H., and W.-P. Chen (2000), The Chi-Chi earthquake sequence: Active out-of sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Kidder, S., J.-P. Avouac, and Y.-C. Chan (2012), Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology, Journal of Geophysical Research, 117(B9), B09408.
Kostrov, B. V. (1974), Seismic moment and energy of earthquakes, and seismic flow of rock., Acad. Sci. USSR Phys. Solid Earth, Engl. Transl., 1, 13- 21.
Kuo, B.-Y., W.-C. Chi, C.-R. Lin, T.-Y. Chang, J. Collin, and C.-S. Liu (2009), Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with with OBS: implications for regional tectonics, Geophysical Journal International, 179: 1859–1869.
Liang, B., and M. Wyss (1991), Estimates of orientations of stress and strain tensors based on fault-plane solutions in the epicentral area of the great Hawaii. earthquake of 1868, Bulletin of the Seismological Society of America, 81, 2320-2334.
Liang, W.-T., J.-M. Chiu, and K. Kim (2007), Anomalous Pn waves observed in eastern Taiwan: Implications of a thin crust and elevated oceanic upper mantle beneath the active collision-zone suture, Bulletin of the Seismological Society of America, 97(4), 1370–1377.
Lin, A. T., and A. B. Watts (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research: Solid Earth, 107(B9), ETG 2-1-ETG 2-19.
Lu, C.-Y., and J. Malavieille (1994), Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling, Earth and Planetary Science Letters, 121, 477-494.
McIntosh, K., Y. Nakamura, T. K. Wang, R. C. Shih, A. Chen, and C. S. Liu (2005), Crustal-scale seismic profiles across Taiwan and the western Philippine Sea, Tectonophys., 401, 23-54.
Mogi, K. (1962), Magnitude–-frequency relations for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831-853.
Nishikawa, T., and S. Ide (2014), Earthquake size distribution in subduction zones linked to slab buoyancy, Nature Geoscience, 7(12), 904-908.
Pezzopane, S. K., and Wesnousky S. G. (1989), Large earthquakes and crustal deformation near Taiwan., Journal of Geophysical Research, 94, 7250-7264.
Reasenberg P., 1985, Second-Order Moment of Central California Seismicity, 1969-1982. Journal of Geophysical Research, 90, 5479-5495.
Savage, J. C., and W. H. Prescott (1978), Asthenosphere readjustment and the earthquake cycle, Journal of Geophysical Research: Solid Earth, 83(B7), 3369-3376.
Scholz, C. H. (1968), The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seism. Soc. Am., 58(1), 399-415.
Scholz, C. H. (2015), On the stress dependence of the earthquake b value, Geophysical Research Letters, 42(5), 2014GL062863.
Seno, T., S. Stein, and Gripp A. E. (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, Journal of Geophysical Research, 98, 17941-17948.
Shearer, P. M., Hardebeck J. L., Astiz L., and Richards-Dinger K. B., (2003), Analysis of similar event clusters in aftershocks of the 1994 Northridge, California, earthquake, Journal of Geophysical Research 108( B1), 2156-2202.
Shin, T.-C., K.-W. Kuo, P.-L. Leu, C.-H. Tsai, and J.-S. Jiang (2011), Continuous CWB GPS Array in Taiwan and Applications to Monitoring Seismic Activity, Terrestrial, Atmospheric and Oceanic Sciences, 22(5), 521-533.
Spada, M., T. Tormann, S. Wiemer, and B. Enescu (2013), Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust, Geophys. Res. Lett., 40(4), 709-714.
Stein, S., and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Structure, Geological Magazine, 140(6), 733-734.
Suppe, J. (1984), Kinematics of arc-continent collision flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33.
Suppe, J. (2014), Fluid overpressures and strength of the sedimentary upper crust, Journal of Structural Geology, 69, 481-492.
Suppe, J., and J. Jamson (1979), Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petroleum Geology of Taiwan, 16, 1-18.
Teng, L. S. (1996), Extensional collapse of the northern Taiwan mountain belt, Geology, 24(10), 949-952.
Utsu, T. (1961), A statistical study on the occurrence of aftershocks, Geophysical Magazine, 30, 521-605.
Waldhauser F. and Ellsworth, W.L., (2000), A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California, Bulletin of the Seismological Society of America, 90(6), 1353–1368.
Wang, J. H. (1988), b vaule of shallow earthquakes in Taiwan. Bulletin of the Seismological Society of America, 78, 1243-1254.
Wang, J. H. (1992), Magnitude scales and their relations for Taiwan earthquakes: A review, Terrestrial, Atmospheric and Oceanic Sciences, 3, 449-468.
Wang, J.-H., K.-C. Chen, P.-L. Leu, and J.-H. Chang (2015), b-Values Observations in Taiwan: A Review, Terrestrial, Atmospheric and Oceanic Sciences, 26(5), 475-492.
Wiemer, S., and M. Wyss (1994), Seismic quiescence before the Landers (M=7.5) and Big Bare (M=6.5) 1992 earthquakes, Bulletin of the Seismological Society of America, 84, 900-916.
Wiemer, S. and M. Wyss (2000), Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bulletin of the Seismological Society of America, 90, 859-869, 2000.
Wiemer, and M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature, 437(7058), 539-542.
Wiemer, S., and M. Wyss (1997), Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?, Journal of Geophysical Research , 102, 15,115–115,128.
Wiemer, S., and S. R. McNutt (1997), Variations in the frequency-magnitude distribution with depth in two vol¬canic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska, Geophysical Research Letters, 24, 189-192.
Wu, Y. H., C. C. Chen, D. L. Turcotte, and J. B. Rundle (2013), Quantifying the seismicity on Taiwan, Geophysical Journal International, 194(1), 465-469.
Wyss, M. (1973), Towards a physical understanding of the earthquake frequency distribution, Geophysical Journal of the Royal Astronomical Society, 31, 341-359.
Wyss, M., B. Liang, W. R. Tanigawa, and X. Wu (1992), Comparison of orientation of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, Journal of Geophysical Research, 97, 4769-4790.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top