跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何信諺
研究生(外文):Hsing-Yan Ho
論文名稱:二氧化鈦與鈣鈦礦化合物串疊薄膜之光催化特性研究
論文名稱(外文):The Photocatalytic Properties of Tandem Thin Films Based on Titania and Perovskite Oxide
指導教授:謝宗霖謝宗霖引用關係
口試委員:段維新陳敏璋薛景中
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:128
中文關鍵詞:二氧化鈦鈮酸銀鈦酸鍶異質接面光電流密度光腐蝕。
外文關鍵詞:TiO2AgNbO3SrTiO3HeterojunctionPhotocurrentPhotocorrosion.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討光觸媒材料二氧化鈦兩種不同的相:銳鈦礦(Anatase)與金紅石(Rutile)以及光觸媒鈣鈦礦化合物:鈮酸銀(AgNbO3)以及鈦酸鍶(SrTiO3),利用溶膠凝膠法(sol-gel)搭配旋轉塗佈法(spin coating)後形成的複合串疊光觸媒薄膜,串疊基本概念遵從太陽能tandem cell的堆疊理念,並利用三極式電化學裝置量測薄膜光電流密度,而光電流密度值則代表光觸媒材料產氫的效率指標之一。
本研究控制退火溫度於二氧化鈦銳鈦礦相至金紅石相之相轉變溫度區間內,將不同銳鈦礦-金紅石混相比例的同質接面薄膜制製備於FTO導電玻璃上。研究結果顯示,於550 oC可得到純銳鈦礦相的薄膜,於FTO導電玻璃之上限使用溫度700 oC則可得到接近純金紅石相之薄膜;搭配紫外光-可見光光譜儀(UV-Vis)以及紫外光電子能譜(UPS)可得到兩者接合之能帶結構關係。結果顯示,光致電子傾向由銳鈦礦傳至金紅石,光致電洞則傾向由金紅石傳至銳鈦礦。同樣的分析亦使用光觸媒材料鈮酸銀及鈦酸鍶上,最後建立四種不同材料的各自的能帶結構,將四種不同材料串疊而成異質接面薄膜,並利用形成之內建電場,使光致電子電洞對快速分離,減少載子再結合的可能性,進而提升光電流密度值。同時,此種由寬能隙依序串疊至窄能隙的方式能有效地利用光源波段區間,進而提升光電流密度;最後再進行光電流試片的穩定度量測,發現二氧化鈦會因長時間的照光下產生光致電洞衍生的光腐蝕(photocorrosion)現象而導致光電流密度的下降。
本研究亦利用添加不同的PVP量的大小來調配鈦酸鍶薄膜的孔洞數量,進而控制表面態位(surface states)之數量,並探討光電流密度下降(photocurrent decay)與孔洞數量的關係。實驗結果顯示,當鈦酸鍶薄膜孔洞數量上升時,會使光電流密度下降比例上升。


In this study, we mainly discuss photocatalyst materials: (1) titanium dioxide with two primary phases: anatase and rutile, (2) perovskite oxide: AgNbO3 and SrTiO3. Synthesizing with sol-gel process and spin-coating method, we try to make tandem thin film with anatase, rutile and perovskite oxide. Later, we measure photocurrent response of our thin film which represents the hydrogen production capability of photocatalyst.
Initially, we control annealing temperature in the anatase to rutile phase transitition window. This action implies the different mix ratios of anatase/rutile homogeneous thin films successfully. The resuls shows we can make pure anatase thin film at 550 oC and nearly pure rutile thin film at 700 oC. Combining UV-Vis spectrum and UPS, we can get the band structure of anatase and rutile after they join together. The band structure implies photogenerated electrons transfer from anatase to rutile, and photogenerated holes transfer from rutile to anatase. Same characterizations are conducted on AgNbO3 and SrTiO3. We stack four materials to make them tandem films. Such design enhances the photocurrent response due to the built-in potential when we have the correct and preferred alignment. Besides, stacking sequence from large to small band gap also improves photocurrent by increase the usage of incident light. In order to verify the stability of our samples, we also conduct fatigue experiments by long-term light illumination. We surprisely find out the photogenerated holes induce photocorrosion of titanium dioxide anatase phase which will decay photocurrent density. Finally, we also create different amounts of pores in SrTiO3 thin films by varing addition amounts of PVP. With this idea, we verify the correlation between surfaces states and the decay phenomenon.


口試委員審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 前言與研究動機 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 光觸媒材料 3
2.1.1 二氧化鈦 3
2.1.1.1 二氧化鈦的基本性質 3
2.1.1.2 二氧化鈦相變化 6
2.1.2 鈮酸銀 9
2.1.3 鈦酸鍶 13
2.2 光解水原理 17
2.3 光電化學電池(Photoelectrochemical, PEC) 21
2.3.1 半導體與電解液之界面 21
2.3.2 PEC裝置改進 25
2.4 提升光觸媒材料光催化分解效率 30
2.5 溶膠凝膠法 38
2.6 原子層沉積技術 44
第三章 實驗方法 47
3.1 二氧化鈦、鈮酸銀、鈦酸鍶溶膠製備流程 49
3.1.1 二氧化鈦溶膠配置 49
3.1.2 鈮酸銀溶膠配置 50
3.1.3 鈦酸鍶溶膠配置 51
3.2 薄膜製備 52
3.2.1 二氧化鈦薄膜製備 52
3.2.2 鈮酸銀薄膜製備 53
3.2.3 鈦酸鍶薄膜製備 54
3.3 材料物理性質與電性分析 55
3.3.1 X光繞射分析 55
3.3.2 掃描式電子顯微鏡 55
3.3.3 X光電子能譜分析 55
3.3.4 紫外光電子能譜分析 56
3.3.5 紫外光/可見光光譜儀 56
3.3.6 孔隙率量測 56
3.3.7 光電流密度量測 56
第四章 實驗結果與討論 59
4.1 二氧化鈦薄膜 60
4.1.1 結晶相分析 60
4.1.2 微結構分析 66
4.1.3 紫外光/可見光吸收、反射、穿透光譜分析 69
4.1.4 紫外光電子能譜分析 74
4.1.5 載子濃度分析(Van Der Pauw四點探針量測) 77
4.1.6 光電流密度量測 79
4.2 同質接面二氧化鈦薄膜 83
4.2.1 空乏區厚度計算 83
4.2.2 原子沉積二氧化鈦薄膜 86
4.2.3 光電流密度量測 88
4.3 異質接面 90
4.3.1 鈮酸銀、鈦酸鍶 90
4.3.1.1 結晶相分析 90
4.3.1.2 微結構分析 92
4.3.1.3 紫外光/可見光吸收、反射、穿透光譜分析 94
4.3.1.4 紫外光電子能譜分析 97
4.3.1.5 光電流密度量測 99
4.3.2 二氧化鈦/鈣鈦礦化合物之異質串疊薄膜 104
4.3.2.1 光電流密度量測 104
4.3.2.2 穩定度量測(疲勞試驗) 109
第五章 結論 115
5.1 研究成果 115
5.2 未來研究方向 117
參考文獻 118


圖目錄
圖2-1 二氧化鈦經體結構示意圖: (a) 金紅石,(b) 銳鈦礦,(c) 板鈦礦 [14]。 5
圖2-2 二氧化鈦光觸媒反應示意圖。[6] 5
圖2-3 二氧化鈦相圖[21]。 6
圖2-4 二氧化鈦自由能對溫度圖[21]。 7
圖2-5 二氧化鈦自由能對壓力圖[21]。 7
圖2-6 晶格常數與溫度關係圖[31]。 10
圖2-7 鈮酸銀能帶結構示意圖[32]。 10
圖2-8 鈮酸銀、鈮酸鈉及其固溶體光電流密度圖[34]。 11
圖2-9 摻雜鑭之鈮酸銀吸收光譜圖[35]。 11
圖2-10 Ag/AgNbO3(10%)於不同偏壓下的SS量測 (a) +3 V (b) 0 V (c)-3 V[36] 12
圖2-11 氧化鎳-鈦酸鍶於不同製程處理下之結構示意圖[41]。 14
圖2-12 氧化鎳-鈦酸鍶光致電子電洞對分解水機制示意圖[42]。 15
圖2-13 鈦酸鍶/氧化鐵異質接面能帶示意圖[44]。 15
圖2-14 鈦酸鍶/氧化鐵、鈦酸鍶、氧化鐵光電流密度圖[44]。 16
圖2-15 於不同熱處理條件下,鈦酸鍶/二氧化鈦奈米管異質接面示意圖[45]。 16
圖2-16 光解水之Gibbs free energy變化圖[46]。 18
圖2-17 半導體材料光解水原理示意圖[47]。 19
圖2-18 光解水裝置示意圖[49]。 19
圖2-19 光觸媒材料產氫過程示意圖[46]。 20
圖2-20 缺陷、晶界使電子電洞復合之示意圖[46]。 21
圖2-21 金屬氧化物與空氣界面內建電位示意圖[56]。 22
圖2-22 n-type及p-type半導體內建電位形式圖[56]。 23
圖2-23 電解液與半導體界面關係圖[57]。 23
圖2-24 n-type半導體應用於PEC裝置示意圖[57]。 24
圖2-25 以鈦酸鍶作為光陽極之PEC裝置示意圖[57]。 24
圖2-26 p/n PEC光解水機制示意圖及其能帶關係[57]。 27
圖2-27 Photochemical diode接合示意圖及其能帶關係[57]。 28
圖2-28 PV-PEC裝置示意圖及其能帶結構[64]。 28
圖2-29 PV-PEC裝置示意圖及其能帶結構[63]。 29
圖2-30 (SrTiO3)x(AgNbO3)1-x固溶體之紫外光/可見光光譜[76]。 32
圖2-31 (SrTiO3)x(AgNbO3)1-x固溶體之能帶結構圖[76]。 32
圖2-32 兩不同能隙值之n-type半導體形成內建電場示意圖[77]。 34
圖2-33 太陽能Tandem cell結構示意圖,將材料依能隙值由寬至窄向下堆疊[79]。 35
圖2-34 以摻雜W進入BiVO4改變載子濃度,再與未摻雜者形成同質接面,進而產生內建電場之示意圖[80]。 35
圖2-35 不同類形的BiVO4試片,由左而右依序為(a) 1%W-doped BiVO4 (b) 1%W-doped BiVO4/ BiVO4正接 (c) 1%W-doped BiVO4/ BiVO4逆接(d)階梯式摻雜的W-doped BiVO4,光從圖的右側入射,左側FTO玻璃基板[80]。 36
圖2-36 四種不同類形的試片之照片,可看出其吸收表現並無巨大差異[80]。 36
圖2-37四種不同試片之載子分離效率(carrier separation)比較圖,橫軸為外加電壓,縱軸為載子分離效率[80]。 37
圖2-38 階梯式摻雜連續內建電場機制示意圖,可減少載子於傳遞過程復合[80]。 37
圖2-39 溶膠凝膠法演化及應用示意圖[81]。 40
圖2-40 無機醇鹽電負度差異反應示意圖[84]。 41
圖2-41 醋酸做為螯合劑穩定過渡金屬醇鹽示意圖[83]。 41
圖2-42 TMOS水解反應示意圖[82]。 42
圖2-43 TMOS 縮合反應示意圖[82]。 42
圖2-44 TMOS交聯反應示意圖[82]。 43
圖2-45 使用ALD於具有渠溝結構矽晶圓生長300 nm氧化鋁之截面SEM影像[99] 45
圖2-46 ALD中一反應循環 (one ALD cycle) 示意圖[100]。 46
圖 3-1二氧化鈦溶膠配置流程圖。 49
圖 3-2鈮酸銀溶膠配置流程圖。 50
圖 3-3鈦酸鍶溶膠配置流程圖。 51
圖 3-4二氧化鈦薄膜流程製備圖。 52
圖 3-5鈮酸銀薄膜製備流程圖。 53
圖 3-6鈦酸鍶薄膜製備流程圖。 54
圖 3-7光電流密度量測裝置實體拍攝圖。 55
圖 3-8光電極試片實體照射圖。 58
圖 3-9全光譜白光光源強度分布圖。 58
圖4-1二氧化鈦層狀薄膜結構示意圖。 59
圖4-2 (a) TiO2(6L)-550C之GIXRD圖譜。 61
圖4-2 (b) TiO2(6L)-650C之GIXRD圖譜 62
圖4-2 (c) TiO2(6L)-660C之GIXRD圖譜。 62
圖4-2 (d) TiO2(6L)-670C之GIXRD圖譜。 63
圖4-2 (e) TiO2(6L)-680C之GIXRD圖譜。 63
圖4-2 (f) TiO2(6L)-690C之GIXRD圖譜。 64
圖4-2 (g) TiO2(6L)-700C之GIXRD圖譜。 64
圖4-3 SEM表面形貌影像 (a) TiO2(6L)-550C (b) TiO2(6L)-650C (c) TiO2(6L)-660C (d) TiO2(6L)-670C。 67
圖4-3 SEM影像 (e) TiO2(6L)-680C (f) TiO2(6L)-690C (g) TiO2(6L)-700C表面形貌影像。 (h) TiO2(6L)-550C (i) TiO2(6L)-700C 剖面影像。 68
圖4-4 TiO2(6L)-550C及TiO2(6L)-700C穿透光譜。 70
圖4-5 TiO2(6L)-550C及TiO2(6L)-700C反射光譜。 71
圖4-6 TiO2(6L)-550C及TiO2(6L)-700C吸收光譜。 71
圖4-7(a) TiO2(6L)-550C經由K-M function及Tauc plot轉換後之圖譜。 72
圖4-7(b) TiO2(6L)-700C經由K-M function及Tauc plot轉換後之圖譜。 72
圖4-8(a) TiO2(6L)-550C薄膜之紫外光電子能譜。 75
圖4-8(b) TiO2(6L)-700C薄膜之紫外光電子能譜。 75
圖4-9 TiO2(6L)-550C與TiO2(6L)-700C薄膜之能帶結構示意圖。 76
圖4-10 銳鈦礦/金紅石接合後之光致電子電洞走向示意圖。 76
圖4-11 不同退火溫度之二氧化鈦薄膜的光電流密度比較圖。 79
圖4-12 銳鈦礦-金紅石複合試片光致電子傳遞示意圖。 80
圖4-13 銳鈦礦/金紅石同質接面試片光電流密度比較圖。 81
圖4-14 以白光通過400 nm long band pass filter後,銳鈦礦/金紅石同質接面試片光電流密度比較圖。 82
圖4-15 p-type半導體與n-type示意圖。(a)接合前,(b)接合後。 83
圖4-16 以ALD及溶膠凝膠法分別製備金紅石與銳鈦礦之同質接面薄膜之流程圖。 86
圖4-17 550C(5L)-700C(ALD,20nm)之剖面影像。 87
圖4-18 550C(5L)-700C(ALD,20nm)、550C(5L)-700C(ALD,10nm)以及550C(6L)的光電流密度比較圖。 89
圖4-19 鈮酸銀(AgNbO3)薄膜之GIXRD圖譜。 91
圖4-20 鈦酸鍶(SrTiO3)薄膜之GIXRD圖譜。 91
圖4-21 SEM表面形貌影像,(a)鈮酸銀(AgNbO3)、(b)鈦酸鍶(SrTiO3)。 92
圖4-22 SEM剖面結構影像, STO(3L)-ANO(3L)所形成之異質接面薄膜。 93
圖4-23 AgNbO3與SrTiO3之穿透光譜。 94
圖4-24 AgNbO3與SrTiO3之反射光譜。 95
圖4-25 AgNbO3與SrTiO3之吸收光譜。 95
圖4-26 AgNbO3經由K-M function及Tauc plot轉換後之圖譜。 96
圖4-27 SrTiO3經由K-M function及Tauc plot轉換後之圖譜。 96
圖4-28 AgNbO3薄膜之紫外光電子能譜。 97
圖4-29 SrTiO3薄膜之紫外光電子能譜。 98
圖4-30 SrTiO3-AgNbO3接合後之光致電子電洞走向示意圖。 98
圖4-31 STO(6L)、ANO(6L)、STO(3L)、ANO(3L)及STO(3L)-ANO(3L)之光電流密度比較圖[98]。 99
圖4-32(a) STO(0g PVP)之SEM表面結構影像。 101
圖4-32(b) STO(0.3g PVP)之SEM表面結構影像。 101
圖4-32(c) STO(0.6g PVP)之SEM表面結構影像。 102
圖4-33 STO(0g PVP)、STO(0.3g PVP) 以及STO(0.6g PVP)之光電流密度比較圖。 103
圖4-34 Anatase/SrTiO3/AgNbO3/Rutile之能帶結構示意圖。 105
圖4-35 Anatase/SrTiO3/AgNbO3/Rutile異質接面薄膜電流-電壓曲線量測示意圖。 105
圖4-36 Anatase/SrTiO3/AgNbO3/Rutile異質接面薄膜電流-電壓曲線圖。 106
圖4-37 Anatase(4L)-STO-ANO-Rutile(ALD 20nm)之SEM剖面結構影像。 107
圖4-38 Anatase(5L)-STO(1L)、Anatase(5L)-ANO(1L)、Anatase(4L)-STO(1L)-ANO(1L)、Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)以及Anatase(6L)的光電流密度比較圖。 108
圖4-39 Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)光電極試片經長時間照光的光電流密度圖。 109
圖4-40 (a) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,不浸泡於1 M KOH水溶液中亦不照光之SEM表面結構圖。 111
圖4-40 (b) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,浸泡於1 M KOH水溶液中12小時但不照光之SEM表面結構圖。 112
圖4-40 (c) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,浸泡於1 M KOH水溶液中12小時並經長時間照光之SEM表面結構圖。 112
圖4-41 (a) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,不浸泡於1 M KOH水溶液中亦不照光之XPS束縛能能譜圖。 113
圖4-41 (b) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,浸泡於1 M KOH水溶液中12小時但不照光之XPS束縛能能譜圖。114
圖4-41 (c) Anatase(4L)-STO(1L)-ANO(1L)-Rutile(ALD 20nm)薄膜,浸泡於1 M KOH水溶液中12小時並經長時間照光之XPS束縛能能譜圖。 114





表目錄
表2-1 二氧化鈦晶體結構資料表[14]。 4
表2-2 二氧化鈦製程、定義相變化溫度的方法[21]。 8
表3-1藥品資料。 48
表4-1 不同退火溫度之銳鈦礦-金紅石比例表。 65
表4-2 銳鈦礦與金紅石的能隙值與相比例對照表。 73
表4-3 不同退火溫搭配不同厚度之二氧化鈦薄膜之載子濃度。 78
表4-4 空乏區厚度整理表。 84
表4-5 STO(0g PVP)、STO(0.3g PVP) 以及STO(0.6g PVP)之光電流密度表。 103


參考文獻
1.F. Akira and K. Honda. “Electrochemical photolysis of water at a semiconductor electrode.” Nature 238 (1972):37-8.
2.F. Akira and K. Honda. “Electrochemical evidence for the mechanism of the primary stage of photosynthesis.” Bulletin for the chemical society of Japan 44, no.4(1971): 1148-1150.
3.M. Ni, K.H. Leung, Y.C. Leung, and K. Sumathy. “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” Renewable and Sustainable Energy Reviews 11, no. 3 (2007).
4.F. Akira, T.N. Rao, and D.A. Tryk. “Titanium dioxide photocatalysis. “Journal of Potochemistry and Potobiology C: Photochemistry Reviews 1, no.1 (2000): 1-21.
5.A.L. Linsebigler, G. Lu, and J.T. Yates Jr. “Photocatalysis on TiO2 surface: principle, mechanisms and selected results. “Chemical reviews 95, no.3(1995):735-758.
6.J.M. Herrmann. “Heterogeneous photocatalysis: fundamentals and application to the removal of various types of aqueous pollutants.” Catalysis today, no. 1 (1999): 115-129.
7.X. Chen and S.S. Mao. “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. “Chemical reviews 107, no. 7 (2007): 2891-2959.
8.T. Takashi, M. Fujitsuka and T. Majima. “Mechanistic insight into the TiO2 photocatalytic reaction: design of new photocatalysts. “The Journal of physical Chemistry C 111, no. 14 (2007): 5259-5275.
9.K. Masaaki, M. Matsuoka, M. Ueshima and M. Anpo. “Recent developments in titanium oxide-based photocatalysts. “Applied Catalysis A: General 325, no. 1(2007): 1-14.
10.G.K. Mor, K.V. Oomman, M. Paulose, K. Shankar and C.A. Grimes. “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications. “Solar Energy Materials and Solar Cells 90, no. 14(2006): 2011-2075.
11.P.V. Kamat. “Meeting the clean energy demand: nanostructure architectures for solar energy conversion. “The Journal of Physical Chemistry C111, no. 7 (2007): 2834-2860.
12.A. Masakazu and M. Takeuchi. “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation.” Journal of catalysis 216, no. 1 (2003): 505-516.
13.F, Akira, X.T. Zhang and Donald A. Tryk. “TiO2 photocatalysis and related surface phenomena.” Surface Science Reports 63, no. 12 (2008): 515-582.
14.S.D. Mo and W.Y. Ching. “Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite.” Physical Review B 51, no. 19 (1995): 13023.
15.H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, and F. Levy. “Electrical and optical properties of TiO2 anatase thin films.” Journal of applied physics 75, no. 4 (1994): 2042-2047.
16.R.G. Breckenridge and R.H. William. “Electrical properties of titanium dioxide in the rutile structure. “Physical review B45, no. 7 (1992): 3874.
17.K.M. Glassford and R.C. James. “Optical properties of titanium dioxide in the rutile structure. “Physical Review B 45, no. 7 (1992): 3874.
18.D. Ulrike. “The surface science of titanium dioxide. “Surface science reports 48, no. 5 (2003): 53-229.
19.A. Amtout and R. Leonelli. “Optical properties of rutile near its fundamental band gap. Physical Review B 51, no. 11 (1995): 6842.
20.A. Sclafani and J.M. Herrmann. “Comparison of the photoelctronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions.” The Journal of Physical Chemistry 100, no. 32 (1996): 13655-13661.
21.D.H. Hanaor and C. Sorrell. “Review of the anatase to rutile phase transformation.” Journal of Materials Science, 46 (2011): 855-874.
22.R.D. Shannon and J.A. Pask. “Kinetics of the Anatase-Rutile Transformation.” Journal of the American Ceramic Society, 48 (1965):391-398.
23.A.W. Czanderna, C. N. R. Rao and J. M. Honig. “The anatase-rutile transition. Part 1.-Kinetics of the transformation of pure anatse.” Transactions of the Faradat Society, 54 (1958): 1069-1073.
24.A. Navrotsky and O.J. Kleppa. “Enthalpy of the Anatase-Rutile Transformation.” Journal of the American Ceramic Society, 50 (1967)
25.T. Mitsuhashi and O.J. Kleppa. “Transformation Enthalpies of the TiO2 Polymorphs.” Journal of the American Ceramic Society, 62 (1979): 356-357.
26.H. Zhang and J.F. Banfield. “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation.” Journal of Materials Research, 15 (2000): 437-448.
27.H. Zhang and J.F. Banfield. “Understanding polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2.” The Journal of Physical Chemistry B 104, no. 15 (2000): 3481-3487.
28.M.R. Randle. “Energetics of nanocrystalline TiO2.” Proceedings of the National Academy of Sciences, 99 (2002): 6476-6481.
29.H. Zhang and J.F. Banfield. “Thermodynamic analysis of phase stability of nanocrystalline titania.” Journal of Materials Chemistry, 8 (1998): 2073-2076.
30.A.A. Gribb and J.F. Banfiled. “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2.” American Mineralogist, 82 (1997): 717-728.
31.M.H. Francombe and B. Lewis. “Structural and electrical properties of silver niobate and silver titanlate.” Acta Crystallographica, 11, (1958): 175-178.
32.H. Kato, H. Kobayashi, and A. Kudo. “Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure.” The Journal of Physical Chemistry B, 106, (2002): 12441-12447.
33.G. Li, T. Kako, D. Wang, Z. Zou, and J. Ye. “Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions.” Journal of solid State Chemistry, 180, (2007): 2845-2850.
34.G. Li, N. Yang, W. Wang, and W.F. Zhang. “Band structure and photoelectrochemical behavior of AgNbO3-NaNbO3 solid solution photoelectrodes.” Electrochimica Acta, 55, (2010): 7235-7239.
35.G. Li, T. Kato, D. Wang, Z.Zou, and J.Ye. “Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation.” Dalton transaction, (2009): 2423-2427.
36.G. Li, Y. Bai, X. Liu and W.F. Zhang. “Surface photoelectric properties of AgNbO3 photocatalyst.” Journal of Physics D: Applied Physics, 42, (2009): 233503.
37.P.A. Fleury, J.F. Scott, and J.M. Worlock. “Soft Phonon Modes and the 110 K Phase Transition in SrTiO3.” Physical Review Letters, 21, (1968): 16-19.
38.M. Cardona. “Optical Propertise and Band Structure of SrTiO3 and BaTiO3.” Physical Review, 140, (1965): 651-655.
39.J.G. Maroides, J.A. Kafalas, and D.F. Kolesar. “Photoelectrolysis of water in cells with SrTiO3 anodes.” Applied Physics Letter, 28, (1976): 241-243.
40.M.S. Wrighton, A.B. Ellis, P.T. Wolczaqnski, D.L. Morse, H.B. Abrahamson and D.S. Ginley. “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential.” Journal of American Chemical Society, 98, (1976): 2774-2779.
41.K. Domen, A. Kudo, T. Onishi, N. Kosugi and K. Kuroda. “Photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 powder. 1. Structure of the catalysis.” The Journal of Physical Chemistry, 90, (1986): 292-295.
42.K. Domen, A. Kudo, and T. Onishi. “Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3.” Journal of Catalysis, 102, (1986): 92-98.
43.H. Kato, A. Kudo. “Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium.” The Journal of Physical Chemistry B, 106, (2002): 5029-5034.
44.Y. Wang, T. Yu, X. Chen, H. Zhang, S. Ouyang, Z. Li, J. Ye, and Z. Zou. “Enhancement of photoelectric conversion properties of SrTiO3/Fe2O3 heterojunction photoanode.” Journal of Physics D: Apllied Physics, 40, (2007): 3925-3930.
45.J. Zhang, J.H. Bang, C. Tang, and P.V. Kamat. “Tailored TiO2-SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance.” ACS Nano, 4, (2009): 387-395.
46.A. Kudo and Y. Miseki. “Heterogeneous photocatalyst materials for water splitting.” Chemical Society Reviews, 38, (2009): 253-278.
47.A. Kudo. “Photocatalyst Materials for Water Splitting.” Catalysis Surveys from Asia, 7, (2003): 31-38.
48.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J.M. Thomas. “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production.” Catalysis Today, 122, (2007): 51-61.
49.A. Fujishima and K. Honda. “Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis.” Bulletin of the Chemical Society of Japan, 44, (1971): 1148-1150.
50.A. Fujishima and K. Honda. “Electorchemical Photolysis of Water at a Semiconductor Electrode.” Nature, 238, (1972): 37-38.
51.A. Fujishima, K. Kohayakawa, and K. Honda. “Formation of Hydrogen Gas with an Electrochemical Photo-cell. “Bulletin of the Chemical Society of Japan, 48, (1975): 1041-1042.
52.A.J. Bard. “Design of semiconductor photoelectrochemical systems for solar energy conversion.” Journal of Physical Chemistry, 86, (1982): 172-177.
53.A.J. Bard. “Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors.” Journal of Photochemistry, 10, (1979): 59-75.
54.A.J. Bard. “Photoelectrochemistry.” Science, 207, (1980): 139-144.
55.L. Li, P.A. Salvador, and G.S. Rohrer. “Photocatalysts with internal electri fields.” Nanoscale, 6, (2014): 24-42.
56.R. van de Krol, and M. Gratzel. “Photoelectrochemical Hydrogen Production.” Electronic Materials: Science and Technology, 102, Springer, New York, (2007).
57.A.J. Nozik, and R. Memming. “Physical Chemistry of Semiconductor-Liquid interfaces.” Journal of Physical Chemistry, 100, (1996): 13061-13078.
58.H. Yoneyama, H. Sakamoto, and H. Tamura. “A Photo-electrochemical cell with production of hydrogen and oxygen by a cell reaction.” Electrochimica Acta, 20, (1975): 341-345.
59.A.J. Nozik. “p-n photoelectrolysis cells.” Applied Physics Letters, 29, (1976): 150-153.
60.A.J. Nozik. “Photochemical diodes.” Applied Physics Letters, 30, (1977): 567-569.
61.H. Mettee, J.W. Otvos, and M. Calvin. “Solar induced water splitting with p/n heterotype photochemical diodes: n-Fe2O3/p-GaP.” Solar Energy Materials, 4, (1981): 443-453.
62.H. Morisaki, T. Watanabe, M. Iwase, and K. Yazawa. “Photoelectrolysis of water with TiO2-covered solar-cell electrodes.” Applied Physics Letters, 29, (1976): 338-340.
63.O. Khaselev and J.A. Turner. “A Monoclithic Photovoltaic- Photoelectrochemical Device for Hydrogen Production via Water Splitting.” Science, 280, (1998): 425-427.
64.M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis. “Solar Water Splitting Cells.” Chemical Reviews, 110, (2010): 6446-6473.
65.M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy. “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” Renewable and Sustainable Energy Reviews, 11, (2007): 401-425.
66.A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, and T.N. Veziroglu. “Studies on the photocatalytic hydrogen production using suspended modified photocatalysts.” International Journal of Hydrogen Energy, 30, (2005): 687-691.
67.A. Koca and M. Sahin. “ Photocatalytic hydrogen production by direct sun light fro sulfide/sulfite solution.” International Journal of Hydrogen Energy, 27, (2002): 363-367.
68.G.R. Bamwenda and H. Arakawa. “The photoinduced evolution of O2 and H2 from WO3 aqueous suspension in the presence of Ce4+/Ce3+.” Solar Energy Materials and Solar Cells, 70, (2001): 1-14.
69.G.R. Bamwendan, S. Tsubota, T. Nakamura, and M. Haruta. “Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. “Journal of Photochemistry and Photobiology A: Chemistry, 89, (1995): 177-189.
70.S.X. Liu, Z.P. Qu, X.W. Han, and C.L. Sun. “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide.” Catalysis Today, 93-95, (2004): 877-884.
71.M.I. Litter. “Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems.” Applied Catalysis B: Environmental, 23, (1999): 89-114.
72.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga. “Visible-Light Photocatalysis in Nitrogen-doped Titanium Oxides.” Science, 293, (2001): 269-271.
73.K.B. Dhanlakshimi, S. Latha, S. Anandan, and P. Maruthamuthu. “Dye-sensitized hydrogen evolution from water.” International Journal of Hydrogen Energy, 26, (2001): 669-674.
74.M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto. “Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst.” Catalysis Letter, 67, (2000): 135-137.
75.D. Wang, T. Kato, and J. Ye. “Efficient Photocatalytic Decomposition of Acetaldehyde over Solid-Solution Perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under Visible-Light Irradiation.” Journal of the American Chemical Society, 130, (2008): 2724-2725.
76.D. Wang, T. Kako, and J. Ye. “New Series of Solid-Solution Semiconductors (AgNbO3)1-x(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light PhotoCatalytic Activity.” The Journal of Physical Chemistry C, 113, (2009): 3785-3792.
77.S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav, and S. Dass. “Nanostructured bilayered thin films in photoelectrochemical water splitting.” Internationl Journal of Hydrogen Energy, 37, (2012): 18713-18730.
78.W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, and E. W. McFarland. “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis.” Solar Energy Materials and Solar Cells, 77, (2003): 229-237.
79.S.Licht. “Mutiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion.” The Journal of Physical Chemistry B, 105, (2001): 6281-6294.
80.F.F. Abdi, L.Han, A.H.M. Smets, M. Zeman, B. Dam, and R. van de Krol. “Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.” Nature Communications, 4, (2013): 2195.
81.A.C. Pierre. “Introduction to sol-gel process.” Springer, New York (1998).
82.L.L. Hench and J.K. West. “The sol-gel chemistry.” Chemical Reviews, 90, (1990): 32-72.
83.J. Livage and C. Sanchez. “Sol-gel chemistry.” Journal of Non-Crystalline Solids, 145, (1992): 11-19.
84.C. Sanchez, J. Livage, M. Henry, and F. Babonneau. “Chemical modification of alkoxide precursors.” Journal of Non-Crystalline Solids, 100, (1988): 65-76.
85.G. Zhao, S. Utsumi, H. Kozuka, and T. Yoko. “ Photochemical properties of sol-gel derived anatase and rutile TiO2 films.” Journal of Material Sicence, 33, (1998): 3655-3659.
86.R. A. Spurr, and H. Myers. “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray diffractometer.” Analytical Chemistry, 29, (1957): 760-762.
87.B. Ohtani, O.O. Prieto-Mahaney, D. Li, and R. Abe. “What is Degussa(Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test.” Journal of Photochemistry and Photobiology A: Chemistry, 216, (2010): 179-182.
88.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia. “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures.” The Journal of Physical Chemistry B, 103, (1999): 630-640.
89.J. Tauc, R. Grigorovici, and A. Vancu. “Optical Properties and Electronic Structure of Amorphous Germanium.” Physica Status Solidi (b), 45, (1966): 623-637.
90.D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss and G. Oskam. “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile.” Nanotechnology, 19, (2008): 145605.
91.D. K. Schroder. “Semiconductor material and device characterization.” Wiley, (1998).
92.施敏,李明逵,半導體元件物理與製作技術,第三版,(2013)。
93.M. D. Stamate. “On the dielectric properties of dc magnetron TiO2 thin film.” Applied Surface Science, 218, (2003): 317-322.
94.M. Telli, S. Trolier-McKinstry, D. Wood ward, and I. Reaney. “Chemical solution on deposited silver tantalite niobate, Agx(Ta0.5Nb0.5)O3-y thin films on (111)Pt/Ti/SiO2/(100)Si substrates.” Journal of Sol-gel Science and Technology, 42, (2007): 407-414.
95.Z. H. Du, T. S. Zhang, M. M. Zhu, and J. Ma. “Perovskite crystallization kinetics and dielectric properties of the PMN-PT films prepared by polymer-modified sol-gel processing.” Journal of Materials Research, 24, (2009): 1576-1584.
96.A. Watanabe and H. Kozuka. “Photoanodic Properties of sol-gel derived Fe2O3 thin films containing dispersed gold and silver particles.” Journal of phusical Chemistry B, (2003): 12713-12720.
97.Y. Yang, Y. Ling, G. Wang, T. Liu, F. Wang, T. Zhai, and Y. Tong. “Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solution.” Nano Letters, (2015): 7051-7057.
98.林易生,鈦酸鍶-鈮酸銀固溶體層狀薄膜結構之光吸收與光電流表現,國立國立臺灣大學材料科學與工程學研究所碩士論文(2014)。
99.G. Steven M. "Atomic layer deposition: an overview." Chemical reviews 110, no. 1 (2009): 111-131.
100.P. Riikka L. "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process." Journal of applied physics 97, no. 12 (2005): 121301.
101.Z.Y. Banyamin, P.J. Kelly, G. West and J. Boardman. “Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering.” Coatings, 4 , (2004): 732-746.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊