|
參考文獻 1.F. Akira and K. Honda. “Electrochemical photolysis of water at a semiconductor electrode.” Nature 238 (1972):37-8. 2.F. Akira and K. Honda. “Electrochemical evidence for the mechanism of the primary stage of photosynthesis.” Bulletin for the chemical society of Japan 44, no.4(1971): 1148-1150. 3.M. Ni, K.H. Leung, Y.C. Leung, and K. Sumathy. “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” Renewable and Sustainable Energy Reviews 11, no. 3 (2007). 4.F. Akira, T.N. Rao, and D.A. Tryk. “Titanium dioxide photocatalysis. “Journal of Potochemistry and Potobiology C: Photochemistry Reviews 1, no.1 (2000): 1-21. 5.A.L. Linsebigler, G. Lu, and J.T. Yates Jr. “Photocatalysis on TiO2 surface: principle, mechanisms and selected results. “Chemical reviews 95, no.3(1995):735-758. 6.J.M. Herrmann. “Heterogeneous photocatalysis: fundamentals and application to the removal of various types of aqueous pollutants.” Catalysis today, no. 1 (1999): 115-129. 7.X. Chen and S.S. Mao. “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. “Chemical reviews 107, no. 7 (2007): 2891-2959. 8.T. Takashi, M. Fujitsuka and T. Majima. “Mechanistic insight into the TiO2 photocatalytic reaction: design of new photocatalysts. “The Journal of physical Chemistry C 111, no. 14 (2007): 5259-5275. 9.K. Masaaki, M. Matsuoka, M. Ueshima and M. Anpo. “Recent developments in titanium oxide-based photocatalysts. “Applied Catalysis A: General 325, no. 1(2007): 1-14. 10.G.K. Mor, K.V. Oomman, M. Paulose, K. Shankar and C.A. Grimes. “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications. “Solar Energy Materials and Solar Cells 90, no. 14(2006): 2011-2075. 11.P.V. Kamat. “Meeting the clean energy demand: nanostructure architectures for solar energy conversion. “The Journal of Physical Chemistry C111, no. 7 (2007): 2834-2860. 12.A. Masakazu and M. Takeuchi. “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation.” Journal of catalysis 216, no. 1 (2003): 505-516. 13.F, Akira, X.T. Zhang and Donald A. Tryk. “TiO2 photocatalysis and related surface phenomena.” Surface Science Reports 63, no. 12 (2008): 515-582. 14.S.D. Mo and W.Y. Ching. “Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite.” Physical Review B 51, no. 19 (1995): 13023. 15.H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, and F. Levy. “Electrical and optical properties of TiO2 anatase thin films.” Journal of applied physics 75, no. 4 (1994): 2042-2047. 16.R.G. Breckenridge and R.H. William. “Electrical properties of titanium dioxide in the rutile structure. “Physical review B45, no. 7 (1992): 3874. 17.K.M. Glassford and R.C. James. “Optical properties of titanium dioxide in the rutile structure. “Physical Review B 45, no. 7 (1992): 3874. 18.D. Ulrike. “The surface science of titanium dioxide. “Surface science reports 48, no. 5 (2003): 53-229. 19.A. Amtout and R. Leonelli. “Optical properties of rutile near its fundamental band gap. Physical Review B 51, no. 11 (1995): 6842. 20.A. Sclafani and J.M. Herrmann. “Comparison of the photoelctronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions.” The Journal of Physical Chemistry 100, no. 32 (1996): 13655-13661. 21.D.H. Hanaor and C. Sorrell. “Review of the anatase to rutile phase transformation.” Journal of Materials Science, 46 (2011): 855-874. 22.R.D. Shannon and J.A. Pask. “Kinetics of the Anatase-Rutile Transformation.” Journal of the American Ceramic Society, 48 (1965):391-398. 23.A.W. Czanderna, C. N. R. Rao and J. M. Honig. “The anatase-rutile transition. Part 1.-Kinetics of the transformation of pure anatse.” Transactions of the Faradat Society, 54 (1958): 1069-1073. 24.A. Navrotsky and O.J. Kleppa. “Enthalpy of the Anatase-Rutile Transformation.” Journal of the American Ceramic Society, 50 (1967) 25.T. Mitsuhashi and O.J. Kleppa. “Transformation Enthalpies of the TiO2 Polymorphs.” Journal of the American Ceramic Society, 62 (1979): 356-357. 26.H. Zhang and J.F. Banfield. “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation.” Journal of Materials Research, 15 (2000): 437-448. 27.H. Zhang and J.F. Banfield. “Understanding polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2.” The Journal of Physical Chemistry B 104, no. 15 (2000): 3481-3487. 28.M.R. Randle. “Energetics of nanocrystalline TiO2.” Proceedings of the National Academy of Sciences, 99 (2002): 6476-6481. 29.H. Zhang and J.F. Banfield. “Thermodynamic analysis of phase stability of nanocrystalline titania.” Journal of Materials Chemistry, 8 (1998): 2073-2076. 30.A.A. Gribb and J.F. Banfiled. “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2.” American Mineralogist, 82 (1997): 717-728. 31.M.H. Francombe and B. Lewis. “Structural and electrical properties of silver niobate and silver titanlate.” Acta Crystallographica, 11, (1958): 175-178. 32.H. Kato, H. Kobayashi, and A. Kudo. “Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure.” The Journal of Physical Chemistry B, 106, (2002): 12441-12447. 33.G. Li, T. Kako, D. Wang, Z. Zou, and J. Ye. “Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions.” Journal of solid State Chemistry, 180, (2007): 2845-2850. 34.G. Li, N. Yang, W. Wang, and W.F. Zhang. “Band structure and photoelectrochemical behavior of AgNbO3-NaNbO3 solid solution photoelectrodes.” Electrochimica Acta, 55, (2010): 7235-7239. 35.G. Li, T. Kato, D. Wang, Z.Zou, and J.Ye. “Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation.” Dalton transaction, (2009): 2423-2427. 36.G. Li, Y. Bai, X. Liu and W.F. Zhang. “Surface photoelectric properties of AgNbO3 photocatalyst.” Journal of Physics D: Applied Physics, 42, (2009): 233503. 37.P.A. Fleury, J.F. Scott, and J.M. Worlock. “Soft Phonon Modes and the 110 K Phase Transition in SrTiO3.” Physical Review Letters, 21, (1968): 16-19. 38.M. Cardona. “Optical Propertise and Band Structure of SrTiO3 and BaTiO3.” Physical Review, 140, (1965): 651-655. 39.J.G. Maroides, J.A. Kafalas, and D.F. Kolesar. “Photoelectrolysis of water in cells with SrTiO3 anodes.” Applied Physics Letter, 28, (1976): 241-243. 40.M.S. Wrighton, A.B. Ellis, P.T. Wolczaqnski, D.L. Morse, H.B. Abrahamson and D.S. Ginley. “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential.” Journal of American Chemical Society, 98, (1976): 2774-2779. 41.K. Domen, A. Kudo, T. Onishi, N. Kosugi and K. Kuroda. “Photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 powder. 1. Structure of the catalysis.” The Journal of Physical Chemistry, 90, (1986): 292-295. 42.K. Domen, A. Kudo, and T. Onishi. “Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3.” Journal of Catalysis, 102, (1986): 92-98. 43.H. Kato, A. Kudo. “Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium.” The Journal of Physical Chemistry B, 106, (2002): 5029-5034. 44.Y. Wang, T. Yu, X. Chen, H. Zhang, S. Ouyang, Z. Li, J. Ye, and Z. Zou. “Enhancement of photoelectric conversion properties of SrTiO3/Fe2O3 heterojunction photoanode.” Journal of Physics D: Apllied Physics, 40, (2007): 3925-3930. 45.J. Zhang, J.H. Bang, C. Tang, and P.V. Kamat. “Tailored TiO2-SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance.” ACS Nano, 4, (2009): 387-395. 46.A. Kudo and Y. Miseki. “Heterogeneous photocatalyst materials for water splitting.” Chemical Society Reviews, 38, (2009): 253-278. 47.A. Kudo. “Photocatalyst Materials for Water Splitting.” Catalysis Surveys from Asia, 7, (2003): 31-38. 48.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J.M. Thomas. “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production.” Catalysis Today, 122, (2007): 51-61. 49.A. Fujishima and K. Honda. “Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis.” Bulletin of the Chemical Society of Japan, 44, (1971): 1148-1150. 50.A. Fujishima and K. Honda. “Electorchemical Photolysis of Water at a Semiconductor Electrode.” Nature, 238, (1972): 37-38. 51.A. Fujishima, K. Kohayakawa, and K. Honda. “Formation of Hydrogen Gas with an Electrochemical Photo-cell. “Bulletin of the Chemical Society of Japan, 48, (1975): 1041-1042. 52.A.J. Bard. “Design of semiconductor photoelectrochemical systems for solar energy conversion.” Journal of Physical Chemistry, 86, (1982): 172-177. 53.A.J. Bard. “Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors.” Journal of Photochemistry, 10, (1979): 59-75. 54.A.J. Bard. “Photoelectrochemistry.” Science, 207, (1980): 139-144. 55.L. Li, P.A. Salvador, and G.S. Rohrer. “Photocatalysts with internal electri fields.” Nanoscale, 6, (2014): 24-42. 56.R. van de Krol, and M. Gratzel. “Photoelectrochemical Hydrogen Production.” Electronic Materials: Science and Technology, 102, Springer, New York, (2007). 57.A.J. Nozik, and R. Memming. “Physical Chemistry of Semiconductor-Liquid interfaces.” Journal of Physical Chemistry, 100, (1996): 13061-13078. 58.H. Yoneyama, H. Sakamoto, and H. Tamura. “A Photo-electrochemical cell with production of hydrogen and oxygen by a cell reaction.” Electrochimica Acta, 20, (1975): 341-345. 59.A.J. Nozik. “p-n photoelectrolysis cells.” Applied Physics Letters, 29, (1976): 150-153. 60.A.J. Nozik. “Photochemical diodes.” Applied Physics Letters, 30, (1977): 567-569. 61.H. Mettee, J.W. Otvos, and M. Calvin. “Solar induced water splitting with p/n heterotype photochemical diodes: n-Fe2O3/p-GaP.” Solar Energy Materials, 4, (1981): 443-453. 62.H. Morisaki, T. Watanabe, M. Iwase, and K. Yazawa. “Photoelectrolysis of water with TiO2-covered solar-cell electrodes.” Applied Physics Letters, 29, (1976): 338-340. 63.O. Khaselev and J.A. Turner. “A Monoclithic Photovoltaic- Photoelectrochemical Device for Hydrogen Production via Water Splitting.” Science, 280, (1998): 425-427. 64.M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis. “Solar Water Splitting Cells.” Chemical Reviews, 110, (2010): 6446-6473. 65.M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy. “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” Renewable and Sustainable Energy Reviews, 11, (2007): 401-425. 66.A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, and T.N. Veziroglu. “Studies on the photocatalytic hydrogen production using suspended modified photocatalysts.” International Journal of Hydrogen Energy, 30, (2005): 687-691. 67.A. Koca and M. Sahin. “ Photocatalytic hydrogen production by direct sun light fro sulfide/sulfite solution.” International Journal of Hydrogen Energy, 27, (2002): 363-367. 68.G.R. Bamwenda and H. Arakawa. “The photoinduced evolution of O2 and H2 from WO3 aqueous suspension in the presence of Ce4+/Ce3+.” Solar Energy Materials and Solar Cells, 70, (2001): 1-14. 69.G.R. Bamwendan, S. Tsubota, T. Nakamura, and M. Haruta. “Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. “Journal of Photochemistry and Photobiology A: Chemistry, 89, (1995): 177-189. 70.S.X. Liu, Z.P. Qu, X.W. Han, and C.L. Sun. “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide.” Catalysis Today, 93-95, (2004): 877-884. 71.M.I. Litter. “Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems.” Applied Catalysis B: Environmental, 23, (1999): 89-114. 72.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga. “Visible-Light Photocatalysis in Nitrogen-doped Titanium Oxides.” Science, 293, (2001): 269-271. 73.K.B. Dhanlakshimi, S. Latha, S. Anandan, and P. Maruthamuthu. “Dye-sensitized hydrogen evolution from water.” International Journal of Hydrogen Energy, 26, (2001): 669-674. 74.M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto. “Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst.” Catalysis Letter, 67, (2000): 135-137. 75.D. Wang, T. Kato, and J. Ye. “Efficient Photocatalytic Decomposition of Acetaldehyde over Solid-Solution Perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under Visible-Light Irradiation.” Journal of the American Chemical Society, 130, (2008): 2724-2725. 76.D. Wang, T. Kako, and J. Ye. “New Series of Solid-Solution Semiconductors (AgNbO3)1-x(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light PhotoCatalytic Activity.” The Journal of Physical Chemistry C, 113, (2009): 3785-3792. 77.S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav, and S. Dass. “Nanostructured bilayered thin films in photoelectrochemical water splitting.” Internationl Journal of Hydrogen Energy, 37, (2012): 18713-18730. 78.W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, and E. W. McFarland. “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis.” Solar Energy Materials and Solar Cells, 77, (2003): 229-237. 79.S.Licht. “Mutiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion.” The Journal of Physical Chemistry B, 105, (2001): 6281-6294. 80.F.F. Abdi, L.Han, A.H.M. Smets, M. Zeman, B. Dam, and R. van de Krol. “Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.” Nature Communications, 4, (2013): 2195. 81.A.C. Pierre. “Introduction to sol-gel process.” Springer, New York (1998). 82.L.L. Hench and J.K. West. “The sol-gel chemistry.” Chemical Reviews, 90, (1990): 32-72. 83.J. Livage and C. Sanchez. “Sol-gel chemistry.” Journal of Non-Crystalline Solids, 145, (1992): 11-19. 84.C. Sanchez, J. Livage, M. Henry, and F. Babonneau. “Chemical modification of alkoxide precursors.” Journal of Non-Crystalline Solids, 100, (1988): 65-76. 85.G. Zhao, S. Utsumi, H. Kozuka, and T. Yoko. “ Photochemical properties of sol-gel derived anatase and rutile TiO2 films.” Journal of Material Sicence, 33, (1998): 3655-3659. 86.R. A. Spurr, and H. Myers. “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray diffractometer.” Analytical Chemistry, 29, (1957): 760-762. 87.B. Ohtani, O.O. Prieto-Mahaney, D. Li, and R. Abe. “What is Degussa(Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test.” Journal of Photochemistry and Photobiology A: Chemistry, 216, (2010): 179-182. 88.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia. “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures.” The Journal of Physical Chemistry B, 103, (1999): 630-640. 89.J. Tauc, R. Grigorovici, and A. Vancu. “Optical Properties and Electronic Structure of Amorphous Germanium.” Physica Status Solidi (b), 45, (1966): 623-637. 90.D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss and G. Oskam. “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile.” Nanotechnology, 19, (2008): 145605. 91.D. K. Schroder. “Semiconductor material and device characterization.” Wiley, (1998). 92.施敏,李明逵,半導體元件物理與製作技術,第三版,(2013)。 93.M. D. Stamate. “On the dielectric properties of dc magnetron TiO2 thin film.” Applied Surface Science, 218, (2003): 317-322. 94.M. Telli, S. Trolier-McKinstry, D. Wood ward, and I. Reaney. “Chemical solution on deposited silver tantalite niobate, Agx(Ta0.5Nb0.5)O3-y thin films on (111)Pt/Ti/SiO2/(100)Si substrates.” Journal of Sol-gel Science and Technology, 42, (2007): 407-414. 95.Z. H. Du, T. S. Zhang, M. M. Zhu, and J. Ma. “Perovskite crystallization kinetics and dielectric properties of the PMN-PT films prepared by polymer-modified sol-gel processing.” Journal of Materials Research, 24, (2009): 1576-1584. 96.A. Watanabe and H. Kozuka. “Photoanodic Properties of sol-gel derived Fe2O3 thin films containing dispersed gold and silver particles.” Journal of phusical Chemistry B, (2003): 12713-12720. 97.Y. Yang, Y. Ling, G. Wang, T. Liu, F. Wang, T. Zhai, and Y. Tong. “Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solution.” Nano Letters, (2015): 7051-7057. 98.林易生,鈦酸鍶-鈮酸銀固溶體層狀薄膜結構之光吸收與光電流表現,國立國立臺灣大學材料科學與工程學研究所碩士論文(2014)。 99.G. Steven M. "Atomic layer deposition: an overview." Chemical reviews 110, no. 1 (2009): 111-131. 100.P. Riikka L. "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process." Journal of applied physics 97, no. 12 (2005): 121301. 101.Z.Y. Banyamin, P.J. Kelly, G. West and J. Boardman. “Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering.” Coatings, 4 , (2004): 732-746.
|