跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信安
研究生(外文):Hsin-An Chen
論文名稱:以第一原理計算二維材料異質接面與鈣鈦礦結構甲胺鉛碘之光學吸收機制
論文名稱(外文):First Principles Calculations on 2D Heterojunctions and Optical Transition Mechanisms of Perovskite MAPbI3
指導教授:陳俊維陳俊維引用關係
口試委員:郭錦龍李明憲李祐慈包淳偉
口試日期:2016-06-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:119
中文關鍵詞:石墨烯與其衍生物二硫化鉬能帶排列穿隧接面鈣鈦礦結構之甲胺鉛碘光學吸收機制能帶解析光學吸收密度
外文關鍵詞:graphene and its derivativesMoS2band alignmenttunneling junctionperovskite MAPbI3optical transition mechanismband-resolved absorption density analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此研究中,吾人首先以第一原理計算探討二為材料異質接面的性質。考慮的二維材料異質接面系統有包含石墨烯及其衍生物、二硫化鉬與六方晶系之氮化硼。這些二維材料彼此之間可以水平方式或垂直方式堆疊,且皆展現了特殊的性質以及應用。吾人將探討石墨烯基底的水平接面、二硫化鉬基底的水平接面與石墨烯/氮化硼/石墨烯的垂直接面。以水平接面來說,吾人主要關注其肖特基能障,亦即其能帶排列。對於垂直接面,其主要應用於穿隧接面元件,故吾人將關注能帶排列與其在外加電場下的行為。這些接面將可應用於各類奈米電子元件。

第二部份中,吾人將探討鈣鈦礦結構之甲胺鉛碘的光學吸收機制。此材料因其在可見光區有很強的吸收,近年來被廣泛運用於太陽能電池的吸光材料且得到很高的光電轉換效率。因此,研究其光學吸收機制將有助於釐清其關鍵之處。吾人將運用「能帶解析光學吸收密度」技術探討之。

We have employed the first-principle calculations to investigate the interfaces of 2D materials in the first part. The considered 2D materials are graphene and its derivatives, MoS2 and hexagonal boron nitride. These 2D materials can be stacked horizontally or vertically. Both of them show special properties and would have some special applications. We research graphene-based horizontal junctions, MoS2-based horizontal junctions and graphene/h-BN/graphene vertical junctions. For horizontal junctions, we focus on Schottky barrier heights, i.e., band alignments. For vertical ones, they can be applied as tunneling junctions; hence band alignments under electric fields are important. This junction can be potentially used in the nanoelectronics.

Secondly, we investigate the optical transitions of perovskite MAPbI3. This material is widely used in the active layer of the solar cell device currently because of the strong absorption near visible-light region and the high power conversion efficiency of the device. Therefore, the optical transition near visible-light region would be the key factor. The band-resolved absorption density analysis is applied to investigate the optical transition mechanism.


Chapter 1 Motivation 1
Chapter 2 Introduction 5
Chapter 3 Analyzing Technique 7
3.1 Cambridge Serial Total Energy Package (CASTEP) 7
3.2 Band Structure 9
3.3 Density of States (DOS) 10
3.4 Dispersion Correction for Density Functional Theory (DFT-D) 12
3.5 Potential Line-up Method for Band Alignments 14
3.6 Optical Properties and Band-Resolved Absorption Density Analysis for Optical Transitions 17
Chapter 4 Graphene-Based Heterojunctions 21
4.1 Motivation 21
4.2 Modeling and Method 25
4.3 Result and Discussion 29
4.3.1 Bulk electronic structures and properties of graphene, GO and GH 29
4.3.2 Saturation test of the supercells 31
4.3.3 Band alignments for horizontal junctions 33
4.3.4 Band alignments for vertical junctions 36
4.3.5 Interfacial charge redistribution 37
4.3.6 Band alignments and charge redistributions under strain conditions 39
4.4 Conclusion 41
Chapter 5 MoS2-Based Heterojunctions 43
5.1 Motivation 43
5.2 Modeling and Method 45
5.3 Result and Discussion 47
5.3.1 Bulk electronic structures and properties of 1H-, 1T- and 1T’-MoS2 47
5.3.2 Saturation test of supercells 49
5.3.3 Band alignment 50
5.4 Conclusion 51
Chapter 6 Vertical Graphene Tunneling Junction 53
6.1 Motivation 53
6.2 Modeling and Method 57
6.3 Result and Discussion 62
6.3.1 Bulk electronic structures and properties of graphene and h-BN 62
6.3.2 Fermi energy differences of graphene/h-BN/graphene tunneling junctions 63
6.3.3 Electric field response of the Fermi energy differences 67
6.3.4 Different stacking of graphene/h-BN/graphene junctions 74
6.3.5 wz-ZnO as the tunneling barrier 79
6.4 Conclusion 82
Chapter 7 Band-Resolved Absorption Density Analysis of Optical Transition Mechanism of Perovskite MAPbI3 85
7.1 Motivation 85
7.2 Modeling and Method 88
7.3 Result and Discussion 90
7.3.1 Bulk electronic structure and properties of polar perovskite MAPbI3 90
7.3.2 Absorption spectrum and band-resolved absorption density analysis 92
7.3.3 Non-polar MAPbI3 99
7.3.4 Comparison between different MAMX3 (M = Pb, Sn; X = I, Cl) 102
7.4 Conclusion 105
Chapter 8 Reference 107
Chapter 9 Supporting Information 117


1.Wallace, P.R., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
2.Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
3.Gusynin, V.P. and S.G. Sharapov, Unconventional Integer Quantum Hall Effect in Graphene. Physical Review Letters, 2005. 95(14): p. 146801.
4.Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
5.Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry''s phase in graphene. Nature, 2005. 438(7065): p. 201-204.
6.Ramasubramaniam, A., Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 2012. 86(11): p. 115409.
7.Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012. 7(11): p. 699-712.
8.Qiu, D.Y., F.H. da Jornada, and S.G. Louie, Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Physical Review Letters, 2013. 111(21): p. 216805.
9.Sundaram, R.S., et al., Electroluminescence in Single Layer MoS2. Nano Letters, 2013. 13(4): p. 1416-1421.
10.Schein, L.B., Electrophotography and development physics. Vol. 14. 1988: Springer Verlag.
11.Fermi, E., Un Metodo Statistico per la Determinazione di alcune Priorieta dell''Atome. Rend. Accad. Naz. Licei, 1927. 6: p. 6.
12.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
13.Li, H., et al., Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small, 2012. 8(1): p. 63-67.
14.Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5(7): p. 487-496.
15.Lin, Y.M., et al., Wafer-Scale Graphene Integrated Circuit. Science, 2011. 332(6035): p. 1294-1297.
16.Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008. 3(5): p. 270-274.
17.Wang, X., L.J. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008. 8(1): p. 323-327.
18.Wang, Y., et al., Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009. 95(6).
19.Zhang, L.M. and M.M. Fogler, Nonlinear Screening and Ballistic Transport in a Graphene pn Junction. Physical Review Letters, 2008. 100(11): p. 116804.
20.Chiu, H.-Y., et al., Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic Substrate Engineering. Nano Letters, 2010. 10(11): p. 4634-4639.
21.Yu, T., et al., Local electrical stress-induced doping and formation of monolayer graphene P-N junction. Applied Physics Letters, 2011. 98(24): p. -.
22.Britnell, L., et al., Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012. 12(3): p. 1707-1710.
23.Britnell, L., et al., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012. 335(6071): p. 947-950.
24.Eda, G., et al., Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2. ACS Nano, 2012. 6(8): p. 7311-7317.
25.Muchharla, B., et al., Tunable Electronics in Large-Area Atomic Layers of Boron–Nitrogen–Carbon. Nano Letters, 2013. 13(8): p. 3476-3481.
26.Yang, N., et al., Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano, 2010. 4(2): p. 887-894.
27.Zhang, D.W., et al., Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 2011. 49(15): p. 5382-5388.
28.Ho, P.-H., et al., Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air Stability. ACS Nano, 2012. 6(7): p. 6215-6221.
29.Miao, X., et al., High Efficiency Graphene Solar Cells by Chemical Doping. Nano Letters, 2012. 12(6): p. 2745-2750.
30.Shanmugam, M., et al., Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Applied Physics Letters, 2012. 100(15): p. -.
31.Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013. 4.
32.Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
33.Eperon, G.E., et al., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
34.Lee, M.H., C.H. Yang, and J.H. Jan, Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Physical Review B, 2004. 70(23).
35.Payne, M.C., et al., Iterative Minimization Techniques for Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
36.Hellmann, H., A new approximation method in the problem of many electrons. Journal of Chemical Physics, 1935. 3(1): p. 61-61.
37.Hellmann, H. and W. Kassatotschkin, Metallic binding according to the combined approximation procedure. Journal of Chemical Physics, 1936. 4(5): p. 324-325.
38.Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik A Hadrons and Nuclei, 1929. 52(7): p. 46.
39.Ceperley, D.M. and B.J. Alder, Ground-State of the Electron-Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566-569.
40.Perdew, J.P. and A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 1981. 23(10): p. 5048-5079.
41.Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
42.Hammer, B., L.B. Hansen, and J.K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999. 59(11): p. 7413-7421.
43.Perdew, J.P., et al., Atoms, Molecules, Solids, and Surfaces - Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
44.Wu, Z.G. and R.E. Cohen, More accurate generalized gradient approximation for solids. Physical Review B, 2006. 73(23).
45.Perdew, J.P., et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008. 100(13).
46.Perdew, J.P., et al., Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Physical Review Letters, 1999. 82(12): p. 2544-2547.
47.Ortmann, F., F. Bechstedt, and W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Physical Review B, 2006. 73(20).
48.Tkatchenko, A. and M. Scheffler, Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 2009. 102(7).
49.Jurecka, P., et al., Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry, 2007. 28(2): p. 555-569.
50.Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006. 27(15): p. 1787-1799.
51.Franciosi, A. and C.G. Van de Walle, Heterojunction band offset engineering. Surface Science Reports, 1996. 25(1–4): p. 1-140.
52.Peressi, M., N. Binggeli, and A. Baldereschi, Band engineering at interfaces: theory and numerical experiments. Journal of Physics D: Applied Physics, 1998. 31(11): p. 1273.
53.Toll, J.S., Causality and the Dispersion Relation - Logical Foundations. Physical Review, 1956. 104(6): p. 1760-1770.
54.Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
55.Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
56.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
57.Novoselov, K.S., et al., Electronic properties of graphene. Physica Status Solidi B-Basic Solid State Physics, 2007. 244(11): p. 4106-4111.
58.Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
59.Neto, A.H.C., Electronic and structural properties of graphene. Abstracts of Papers of the American Chemical Society, 2009. 238.
60.Kuzmenko, A.B., et al., Universal optical conductance of graphite. Physical Review Letters, 2008. 100(11).
61.Staley, N., et al., Lithography-free fabrication of graphene devices. Applied Physics Letters, 2007. 90(14).
62.Wu, J.B., et al., Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 2008. 92(26).
63.Traversi, F., V. Russo, and R. Sordan, Integrated complementary graphene inverter. Applied Physics Letters, 2009. 94(22).
64.Brodie, B., Sur le poids atomique du graphite. Ann. Chim. Phys, 1860. 59(1860): p. 466-472.
65.Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 1898. 31(2): p. 1481-1487.
66.Boukhvalov, D.W. and M.I. Katsnelson, Modeling of graphite oxide. Journal of the American Chemical Society, 2008. 130(32): p. 10697-10701.
67.McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404.
68.Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nature Nanotechnology, 2009. 4(4): p. 217-224.
69.Tung, V.C., et al., High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009. 4(1): p. 25-29.
70.Wu, X.S., et al., Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Physical Review Letters, 2008. 101(2).
71.Eda, G., et al., Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 2010. 22(4): p. 505-509.
72.Chien, C.-T., et al., Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie International Edition, 2012. 51(27): p. 6662-6666.
73.Psofogiannakis, G.M. and G.E. Froudakis, DFT Study of Hydrogen Storage by Spillover on Graphite with Oxygen Surface Groups. Journal of the American Chemical Society, 2009. 131(42): p. 15133-+.
74.Wang, L., et al., Graphene Oxide as an Ideal Substrate for Hydrogen Storage. Acs Nano, 2009. 3(10): p. 2995-3000.
75.Sluiter, M.H.F. and Y. Kawazoe, Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene. Physical Review B, 2003. 68(8).
76.Elias, D.C., et al., Control of Graphene''s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009. 323(5914): p. 610-613.
77.Novoselov, K., Beyond the wonder material. Physics World, 2009. 22(8): p. 27-30.
78.Sofo, J.O., A.S. Chaudhari, and G.D. Barber, Graphane: A two-dimensional hydrocarbon. Physical Review B, 2007. 75(15).
79.Savini, G., A.C. Ferrari, and F. Giustino, First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor. Physical Review Letters, 2010. 105(3).
80.Ziogos, O.G. and L. Tsetseris, Formation and properties of graphane superstructures. Journal of Physics-Condensed Matter, 2013. 25(8).
81.Sahin, H., C. Ataca, and S. Ciraci, Magnetization of graphane by dehydrogenation. Applied Physics Letters, 2009. 95(22).
82.Lebegue, S., et al., Accurate electronic band gap of pure and functionalized graphane from GW calculations. Physical Review B, 2009. 79(24).
83.Hussain, T., et al., Calcium doped graphane as a hydrogen storage material. Applied Physics Letters, 2012. 100(18).
84.Bonaccorso, F., et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015. 347(6217).
85.Durajski, A.P., Influence of hole doping on the superconducting state in graphane. Superconductor Science & Technology, 2015. 28(3).
86.Byun, I.-S., et al., Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano, 2011. 5(8): p. 6417-6424.
87.Gilje, S., et al., A chemical route to graphene for device applications. Nano Letters, 2007. 7(11): p. 3394-3398.
88.Hong, S.K., et al., Flexible Resistive Switching Memory Device Based on Graphene Oxide. Ieee Electron Device Letters, 2010. 31(9): p. 1005-1007.
89.Giovannetti, G., et al., Doping graphene with metal contacts. Physical Review Letters, 2008. 101(2).
90.Khomyakov, P.A., et al., Nonlinear screening of charges induced in graphene by metal contacts. Physical Review B, 2010. 82(11).
91.Bokdam, M., et al., Electrostatic Doping of Graphene through Ultrathin Hexagonal Boron Nitride Films. Nano Letters, 2011. 11(11): p. 4631-4635.
92.Behera, H. and G. Mukhopadhyay, Strain-tunable band gap in graphene/h-BN hetero-bilayer. Journal of Physics and Chemistry of Solids, 2012. 73(7): p. 818-821.
93.Giovannetti, G., et al., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B, 2007. 76(7).
94.Drissi, L.B., et al., DFT investigations of the hydrogenation effect on silicene/graphene hybrids. Journal of Physics-Condensed Matter, 2012. 24(48).
95.Ma, Y.D., et al., Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale, 2011. 3(9): p. 3883-3887.
96.Monkhorst, H.J. and J.D. Pack, Special Points for Brillouin-Zone Integrations. Physical Review B, 1976. 13(12): p. 5188-5192.
97.Khomyakov, P.A., et al., First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B, 2009. 79(19): p. 195425.
98.Yan, J.-A., L. Xian, and M.Y. Chou, Structural and Electronic Properties of Oxidized Graphene. Physical Review Letters, 2009. 103(8): p. 086802.
99.Leenaerts, O., B. Partoens, and F.M. Peeters, Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Physical Review B, 2009. 80(24): p. 245422.
100.Ataca, C., H. Şahin, and S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
101.Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
102.Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
103.RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
104.Kumar, A. and P.K. Ahluwalia, A first principle Comparative study of electronic and optical properties of 1H – MoS2 and 2H – MoS2. Materials Chemistry and Physics, 2012. 135(2–3): p. 755-761.
105.Joensen, P., R.F. Frindt, and S.R. Morrison, Single-layer MoS2. Materials Research Bulletin, 1986. 21(4): p. 457-461.
106.Novoselov, K., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
107.Wypych, F. and R. Schöllhorn, 1T-MoS 2, a new metallic modification of molybdenum disulfide. Journal of the Chemical Society, Chemical Communications, 1992(19): p. 1386-1388.
108.Kumar, A. and P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. European Physical Journal B, 2012. 85(6).
109.Botello-Mendez, A.R., et al., Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology, 2009. 20(32).
110.Reshak, A.H. and S. Auluck, Calculated optical properties of 2H-MoS2 intercalated with lithium. Physical Review B, 2003. 68(12).
111.Bhuwalka, K.K., et al., Vertical tunnel field-effect transistor. Electron Devices, IEEE Transactions on, 2004. 51(2): p. 279-282.
112.Kazazis, D., et al., Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator. Applied Physics Letters, 2009. 94(26): p. -.
113.Ionescu, A.M. and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011. 479(7373): p. 329-337.
114.Cong, C.X., et al., Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene. Acs Nano, 2011. 5(11): p. 8760-8768.
115.Yuk, J.M., et al., Superstructural defects and superlattice domains in stacked graphene. Carbon, 2014. 80: p. 755-761.
116.Huda, M.N. and L. Kleinman, h-BN monolayer adsorption on the Ni (111) surface: A density functional study. Physical Review B, 2006. 74(7).
117.Topsakal, M., E. Akturk, and S. Ciraci, First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Physical Review B, 2009. 79(11).
118.Constantinescu, G., A. Kuc, and T. Heine, Stacking in Bulk and Bilayer Hexagonal Boron Nitride. Physical Review Letters, 2013. 111(3).
119.Heltemes, E.C. and H.L. Swinney, Anisotropy in Lattice Vibrations of Zinc Oxide. Journal of Applied Physics, 1967. 38(5): p. 2387-&.
120.O''Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
121.Lee, T.-W., et al., Polymer light-emitting devices using ionomers as an electron injecting and hole blocking layer. Journal of Applied Physics, 2001. 90(5): p. 2128-2134.
122.Hayakawa, A., et al., High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Applied Physics Letters, 2007. 90(16): p. 163517-163517-3.
123.Ben Khalifa, M., D. Vaufrey, and J. Tardy, Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs. Organic Electronics, 2004. 5(4): p. 187-198.
124.Adachi, C., et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters, 2000. 77(6): p. 904-906.
125.Zhao, D.W., et al., An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Applied Physics Letters, 2009. 95(15): p. -.
126.Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
127.Navrotsky, A., Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chemistry of Materials, 1998. 10(10): p. 2787-2793.
128.Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, 1990. 41(11): p. 7892-7895.
129.Amat, A., et al., Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting. Nano Letters, 2014. 14(6): p. 3608-3616.
130.Weller, M.T., et al., Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chemical Communications, 2015. 51(20): p. 4180-4183.
131.Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18): p. 5628-5641.
132.Giorgi, G., et al., Cation Role in Structural and Electronic Properties of 3D Organic-Inorganic Halide Perovskites: A DFT Analysis. Journal of Physical Chemistry C, 2014. 118(23): p. 12176-12183.
133.He, Y.P. and G. Galli, Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3Al3 (A = Pb and Sn). Chemistry of Materials, 2014. 26(18): p. 5394-5400.
134.Umari, P., E. Mosconi, and F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 2014. 4.
135.Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
136.Kim, H.S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2.
137.Noh, J.H., et al., Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013. 13(4): p. 1764-1769.
138.Jeon, N.J., et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014. 13(9): p. 897-903.
139.Colella, S., et al., MAPbl(3-x) Cl-x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 2013. 25(22): p. 4613-4618.
140.Pellet, N., et al., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie-International Edition, 2014. 53(12): p. 3151-3157.
141.Frost, J.M., et al., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014. 14(5): p. 2584-2590.
142.Lee, J.H., et al., Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chemical Communications, 2015. 51(29): p. 6434-6437.
143.Mosconi, E., P. Umari, and F. De Angelis, Electronic and optical properties of mixed Sn-Pb organohalide perovskites: a first principles investigation. Journal of Materials Chemistry A, 2015. 3(17): p. 9208-9215.
144.Katan, C., et al., Interplay of spin-orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites. Journal of Materials Chemistry A, 2015. 3(17): p. 9232-9240.
145.Xing, G.C., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013. 342(6156): p. 344-347.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top