(3.215.183.251) 您好!臺灣時間:2021/04/22 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱國瑞
研究生(外文):Kuo-Jui Chu
論文名稱:以紙基微陣列與分子型二次離子質譜術進行高通量之平行檢測與定量
論文名稱(外文):High-Throughput Parallel Detection and Quantification of Peptides with Paper-based Microarray and Molecular Time-of-flight Secondary Ion Mass Spectroscopy (ToF-SIMS)
指導教授:薛景中
口試委員:虞邦英康佳正
口試日期:2014-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:二次離子質譜儀微陣列高通量分析
外文關鍵詞:Secondary ion mass spectrometrymicroarrayhigh-throughput analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二次離子質譜儀(SIMS)在表面分析上具有極高的靈敏度。加上近年來簇離子團(cluster ion)濺射技術的發展,二次離子質譜儀能夠產生高質量的離子破片,並分析未經同位素標記的混合樣品。而飛行式二次離子質譜儀(ToF-SIMS)屬於靜態二次離子質譜儀,在分析樣品後不對其造成改變,且能獲得全質譜以利分析。此外,利用高度聚焦的一次離子掃描樣品表面能獲得足夠的空間解析度,而且只需要少量的樣品消耗就能取得高解析度的分子分佈影像。結合微陣列(microarray)能善用上述優點進行高通量的樣品分析。近來由於成本低廉與製備容易,紙質的微陣列是與SIMS分析整合的絕佳選擇。在此研究中則採用玻璃纖維濾紙來製作微陣列,因為無機的玻璃纖維相較於一般的紙質濾紙在高質量區的質譜中有較低的背景質,較適合用來分析。玻璃纖維的濾紙會經octadecyltrichlorosilane (OTS)的自組裝單層膜(self-assemble monolayer)修飾成疏水性的表面後,再使用雷射雕刻機選擇性的製作出親水性的微陣列。接著不同濃度的胜肽(peptide)水溶液以1 μL分別滴在這些親水的圓形區域中,而尚未移除的疏水區域用來區隔每個粒滴。用來獲得二次離子影像的脈衝20 kV C60+聚焦至~3 μm,離子通量為3.8×109 ion/cm2。大面積馬賽克影像是由700 μm×700 μm每幀256×256像素的影像拼成。經由實驗發現,胜肽分子的二次離子訊號相對強度正比於在水溶液中的濃度,透過不同胜肽分子濃度對二次離子相對強度的數據能繪製校準曲線用來定量混合的胜肽分子。藉由結合玻璃纖維基材的微陣列與影像二次離子質譜儀能高通量且低樣品消耗的分析混合胜肽樣品。

Secondary ion mass spectrometry (SIMS) is known as a powerful technique to perform surface analysis with high sensitivity. In recent development of cluster ion sputtering, current SIMS is capable to generate molecular ions of high mass that allow the parallel analysis of molecular mixtures without the need of labeling. With time-of-flight SIMS that operated within the static regime, the specimen is practically unaltered after analysis and the whole m/z pattern (up to a few thousand) can be acquired at the same time. Furthermore, with a focused primary ion that scans over the specimen, high spatial resolution images of molecular distribution on a surface could be obtained with minimal sample consumption. In order to utilize these advantages, a microarray of specimens could be prepared for automatic high throughput analysis of trace molecules. Recently, owing to its low-cost fabrication and ease of modification, paper-based microarray is an excellent candidate to be integrated with the SIMS analysis. In this work, glass microfiber filter paper was used to prepare the microarray because the inorganic glass microfiber is found to yields less background in the high mass (molecular ion) regime than cellulose-based paper. The filter paper was modified with octadecyltrichlorosilane (OTS) self-assemble monolayer (SAM) to form a hydrophobic surface. Hydrophilic microarray was then prepared by using a laser scriber that selectively removed the OTS layer with a designed pattern. 1 μL aqueous drops of various peptides at concentrations between 1.0 and 0.1 mM were then dispensed inside these circular patterns where the OTS SAM was removed while the remaining OTS layer serves as a barrier and separated each drop. Secondary ion images were acquired with a focused (~3 μm beam size) C60+ pulse operated at 20 kV and the primary ion dose was 3.8×109 ion/cm2. Large area mosaic image was obtained by stitching 700×700 μm2 frames of 256×256 pixel. The secondary ion intensities of peptides (e.g. M+Na+) normalized with respect to glass microfiber (SiOH+) were found to be proportional to their concentration in the solution. In other words, calibration curve for each peptide was generated for quantification and the detection limit is in the order of sub-pmol. By combining the paper-based micropad and imaging SIMS, this work demonstrated that the composition of mixed peptides can be determined with high throughput and low sample consumption.

口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xii
第1章 緒論 1
第2章 文獻回顧 4
2.1 質譜儀於解析生物及有機分子之應用 4
2.2 二次離子質譜儀於分析生物及有機分子之應用 9
2.2.1 簇離子與多原子離子應用於二次離子質譜儀之演進 10
2.2.2 簇離子與多原子離子濺射機制 12
2.3 C60+離子源於二次離子質譜儀之應用 14
2.3.1 C60+離子源濺射於SIMS中的優勢 — 二次離子產率提高 14
2.3.2 C60+離子源濺射於SIMS中的優勢 — 低損傷機率 15
2.3.3 C60+離子源濺射於SIMS中的優勢 — 有助影像建立 15
2.4 C60+離子濺射中以基質(matrix)輔助之分析 19
2.5 自組裝單層膜(self-assembled monolayer, SAM) 20
2.5.1 有機矽氧烷自組裝膜 22
2.6 高通量分析(High-throughput analysis) 25
2.6.1 微陣列分析(Microarray) 25
2.6.2 紙基微陣列(paper-based microarray) 27
第3章 實驗 30
3.1 藥品與基材 30
3.2 實驗儀器介紹 31
3.2.1 飛行時間二次離子質譜儀(Time-of-Flight Secondary Ion Mass Spectrometer, ToF-SIMS) 31
3.2.2 掃描式電子顯微鏡(Scanning Electron Microscope) 33
3.2.3 CO2雷射雕刻機(CO2 Laser Scriber) 33
3.3 實驗步驟 35
3.3.1 微陣列製備 35
3.3.2 樣品製備 35
3.3.3 ToF-SIMS分析 36
3.3.4 SEM分析 37
第4章 實驗結果與討論 38
4.1 微陣列製備 38
4.1.1 基材選擇 38
4.1.2 直接觀察微陣列 40
4.1.3 SEM觀察微陣列 41
4.1.4 微陣列的二次離子影像 45
4.2 基材與各胜肽之定性分析 48
4.2.1 基材分析 48
4.2.2 各胜肽(peptide)分子之定性分析 49
4.2.3 小結 57
4.3 各胜肽分子之定量分析 58
4.3.1 高通量之胜肽分子定量分析 58
4.3.2 混合胜肽之定量測試 65
第5章 結論 67
參考文獻 68


[1] M. Karas, D. Bachmann and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
[2] M. Karas, D. Bachmann, U. e. Bahr and F. Hillenkamp, Matrix-assisted ultraviolet laser desorption of non-volatile compounds. International journal of mass spectrometry and ion processes 1987, 78, 53-68.
[3] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida and T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153.
[4] J. Delmore, A. Appelhans and E. Peterson, Tube ion source for the study of chemical effects in surface ionisation. International journal of mass spectrometry and ion processes 1991, 108 (2), 179-187.
[5] F. Kötter and A. Benninghoven, Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment. Applied Surface Science 1998, 133 (1), 47-57.
[6] K. Boussofiane-Baudin, G. Bolbach, A. Brunelle, S. Della-Negra, P. Håkansson and Y. Le Beyec, Secondary ion emission under cluster impact at low energies (5–60 keV); influence of the number of atoms in the projectile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1994, 88 (1), 160-163.
[7] Y. Le Beyec, Cluster impacts at keV and MeV energies: Secondary emission phenomena. International journal of mass spectrometry and ion processes 1998, 174 (1), 101-117.
[8] C.-J. Chang, H.-Y. Chang, Y.-W. You, H.-Y. Liao, Y.-T. Kuo, W.-L. Kao, G.-J. Yen, M.-H. Tsai and J.-J. Shyue, Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C 60+–Ar+ co-sputtering. Anal Chim Acta 2012, 718, 64-69.
[9] P. L. Urban, K. Jefimovs, A. Amantonico, S. R. Fagerer, T. Schmid, S. Mädler, J. Puigmarti-Luis, N. Goedecke and R. Zenobi, High-density micro-arrays for mass spectrometry. Lab Chip 2010, 10 (23), 3206-3209.
[10] D. A. Skoog, Principles of instrumental analysis. third ed.; Saunders college publishing: 1984; pp 528-529.
[11] D. A. Skoog, Principles of instrumental analysis. third ed.; Saunders college publishing: 1984; pp 529-530.
[12] D. A. Skoog, Principles of instrumental analysis. third ed.; Saunders college publishing: 1984; pp 530-531.
[13] H. Beckey, Field desorption mass spectrometry: A technique for the study of thermally unstable substances of low volatility. International Journal of Mass Spectrometry and Ion Physics 1969, 2 (6), 500-502.
[14] H. Winkler and H. Beckey, Field desorption mass spectrometry of peptides. Biochemical and biophysical research communications 1972, 46 (2), 391-398.
[15] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
[16] L. Konermann and D. Douglas, Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two‐state from multi‐state transitions. Rapid Communications in Mass Spectrometry 1998, 12 (8), 435-442.
[17] C. Ho, C. Lam, M. Chan, R. Cheung, L. Law, L. Lit, K. Ng, M. Suen and H. Tai, Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical Biochemist Reviews 2003, 24 (1), 3.
[18] M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60 (20), 2299-2301.
[19] R. C. Beavis, B. T. Chait and K. Standing, Matrix‐assisted laser‐desorption mass spectrometry using 355 nm radiation. Rapid Communications in Mass Spectrometry 1989, 3 (12), 436-439.
[20] M. Karas and U. Bahr, Laser desorption ionization mass spectrometry of large biomolecules. TrAC Trends in Analytical Chemistry 1990, 9 (10), 321-325.
[21] M. Andersson, M. R. Groseclose, A. Y. Deutch and R. M. Caprioli, Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 2008, 5 (1), 101-108.
[22] H. R. Morris, M. Panico, M. Barber, R. S. Bordoli, R. D. Sedgwick and A. Tyler, Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochemical and biophysical research communications 1981, 101 (2), 623-631.
[23] M. Barber, R. S. Bordoli, R. D. Sedgwick and A. N. Tyler, Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. Journal of the Chemical Society, Chemical Communications 1981, (7), 325-327.
[24] D. Torgerson, R. Skowronski and R. Macfarlane, New approach to the mass spectroscopy of non-volatile compounds. Biochemical and biophysical research communications 1974, 60 (2), 616-621.
[25] R. Macfarlane and D. Torgerson, Californium-252 plasma desorption mass spectroscopy. Science 1976, 191 (4230), 920-925.
[26] R. G. Cooks, Advances in Mass Spectrometry. Heyden & Son: London: 1989; Vol. 11A.
[27] K. J. Wu and R. W. Odom, Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Analytical Chemistry 1996, 68 (5), 873-882.
[28] L. Adriaensen, F. Vangaever, J. Lenaerts and R. Gijbels, Matrix‐enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Communications in Mass Spectrometry 2005, 19 (8), 1017-1024.
[29] B. Hagenhoff, ToF-SIMS: Surface Analysis by Mass Spectrometry. IM Publications and Surface Spectra Limited: 2001; pp 285-308.
[30] H. Nygren, C. Eriksson, P. Malmberg, H. Sahlin, L. Carlsson, J. Lausmaa and P. Sjövall, A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging TOF-SIMS. Colloids and Surfaces B: Biointerfaces 2003, 30 (1), 87-92.
[31] V. Vorsa, T. Kono, K. F. Willey and N. Winograd, Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via α-cleavage reactions. The Journal of Physical Chemistry B 1999, 103 (37), 7889-7895.
[32] K. Wittmaack, Secondary-ion emission from silicon bombarded with atomic and molecular noble-gas ions. Surface Science 1979, 90 (2), 557-563.
[33] S. Johar and D. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films. Surface Science 1979, 90 (2), 319-330.
[34] H. Andersen and H. Bay, Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics 1974, 45 (2), 953-954.
[35] M. Blain, S. Della‐Negra, H. Joret, Y. Le Beyec and E. Schweikert, A new experimental method for determining secondary ion yields from surfaces bombarded by complex heterogeneous ions. Journal of Vacuum Science & Technology A 1990, 8 (3), 2265-2268.
[36] Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag {111} as explored by molecular dynamics simulations. Analytical Chemistry 2003, 75 (17), 4402-4407.
[37] Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Microscopic insights into the sputtering of Ag {111} induced by C60 and Ga bombardment. The Journal of Physical Chemistry B 2004, 108 (23), 7831-7838.
[38] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerene. Nature 1985, 318 (6042), 162-163.
[39] E. Schweikert, M. J. van Stipdonk and R. D. Harris, A comparison of desorption yields from C60+ to atomic and polyatomic projectiles at keV energies. Rapid Communications in Mass Spectrometry 1996, 10 (15), 1987-1991.
[40] S. Wong, R. Hill, P. Blenkinsopp, N. Lockyer, D. Weibel and J. Vickerman, Development of a C60+ ion gun for static SIMS and chemical imaging. Applied Surface Science 2003, 203, 219-222.
[41] D. Weibel, S. Wong, N. Lockyer, P. Blenkinsopp, R. Hill and J. C. Vickerman, A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Analytical Chemistry 2003, 75 (7), 1754-1764.
[42] N. Sanada, A. Yamamoto, R. Oiwa and Y. Ohashi, Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis. Surface and Interface Analysis 2004, 36 (3), 280-282.
[43] N. Davies, D. Weibel, P. Blenkinsopp, N. Lockyer, R. Hill and J. Vickerman, Development and experimental application of a gold liquid metal ion source. Applied Surface Science 2003, 203, 223-227.
[44] D. Touboul, F. Kollmer, E. Niehuis, A. Brunelle and O. Laprévote, Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 2005, 16 (10), 1608-1618.
[45] E. A. Jones, N. P. Lockyer and J. C. Vickerman, Mass spectral analysis and imaging of tissue by ToF-SIMS—The role of buckminsterfullerene, C60+, primary ions. International Journal of Mass Spectrometry 2007, 260 (2), 146-157.
[46] J. S. Fletcher, N. P. Lockyer, S. Vaidyanathan and J. C. Vickerman, TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry 2007, 79 (6), 2199-2206.
[47] A. Wucher, S. Sun, C. Szakal and N. Winograd, Molecular depth profiling of histamine in ice using a buckminsterfullerene probe. Analytical Chemistry 2004, 76 (24), 7234-7242.
[48] A. Wucher, S. Sun, C. Szakal and N. Winograd, Molecular depth profiling in ice matrices using C60 projectiles. Applied Surface Science 2004, 231, 68-71.
[49] W. Bigelow, D. Pickett and W. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
[50] R. G. Nuzzo and D. L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
[51] Y. Xia and G. M. Whitesides, Soft lithography. Annual review of materials science 1998, 28 (1), 153-184.
[52] T. R. Lee, P. E. Laibinis, J. P. Folkers and G. M. Whitesides, Heterogeneous catalysis on platinum and self-assembled monolayers on metal and metal oxide surfaces. Pure and applied chemistry 1991, 63 (6), 821-828.
[53] J. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides and R. G. Nuzzo, Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 1995, 11 (3), 813-824.
[54] A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press: 2013.
[55] L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. Journal of the American Chemical Society 1990, 112 (2), 570-579.
[56] W.-C. Lin, S.-H. Lee, M. Karakachian, B.-Y. Yu, Y.-Y. Chen, Y.-C. Lin, C.-H. Kuo and J.-J. Shyue, Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Physical Chemistry Chemical Physics 2009, 11 (29), 6199-6204.
[57] Y.-C. Lin, B.-Y. Yu, W.-C. Lin, S.-H. Lee, C.-H. Kuo and J.-J. Shyue, Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. J Colloid Interface Sci 2009, 340 (1), 126-130.
[58] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102 (1), 92-98.
[59] H. Sugimura, A. Hozumi, T. Kameyama and O. Takai, Organosilane self‐assembled monolayers formed at the vapour/solid interface. Surface and Interface Analysis 2002, 34 (1), 550-554.
[60] M. E. McGovern, K. M. Kallury and M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614.
[61] G. Hopfgartner and E. Bourgogne, Quantitative high‐throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom Rev 2003, 22 (3), 195-214.
[62] L. H. Augenlicht and D. Kobrin, Cloning and screening of sequences expressed in a mouse colon tumor. Cancer research 1982, 42 (3), 1088-1093.
[63] T.-W. Chang, Binding of cells to matrixes of distinct antibodies coated on solid surface. Journal of immunological methods 1983, 65 (1), 217-223.
[64] M. Schena, D. Shalon, R. W. Davis and P. O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270 (5235), 467-470.

[65] R. M. Gonzalez, S. M. Varnum and R. C. Zangar, Sandwich ELISA microarrays: Generating reliable and reproducible assays for high-throughput screens. In Biomarker methods in drug discovery and development, Springer: 2008; pp 273-290.
[66] M. Pabst, S. R. Fagerer, R. Köhling, S. K. Küster, R. Steinhoff, M. Badertscher, F. Wahl, P. S. Dittrich, K. Jefimovs and R. Zenobi, Self-aliquoting microarray plates for accurate quantitative matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2013, 85 (20), 9771-9776.
[67] A. L. Hook, P. M. Williams, M. R. Alexander and D. J. Scurr, Multivariate ToF-SIMS image analysis of polymer microarrays and protein adsorption. Biointerphases 2015, 10 (1), 019005.
[68] A. L. Hook, C.-Y. Chang, J. Yang, D. J. Scurr, R. Langer, D. G. Anderson, S. Atkinson, P. Williams, M. C. Davies and M. R. Alexander, Polymer microarrays for high throughput discovery of biomaterials. Journal of visualized experiments: JoVE 2012, (59).
[69] A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. Analytical Chemistry 2009, 82 (1), 3-10.
[70] M. Cretich, V. Sedini, F. Damin, M. Pelliccia, L. Sola and M. Chiari, Coating of nitrocellulose for colorimetric DNA microarrays. Analytical biochemistry 2010, 397 (1), 84-88.
[71] R. S. Alkasir, M. Ornatska and S. Andreescu, Colorimetric paper bioassay for the detection of phenolic compounds. Analytical Chemistry 2012, 84 (22), 9729-9737.
[72] http://www.phi.com/surface-analysis-techniques/tof-sims.html. Physical Electronics, Inc.
[73] T. Shibamori, Y. Muraji, N. Man and A. Karen, TOF-SIMS measurement of ultra-thin SiO2 films prepared by the graded-etching method. Applied Surface Science 2003, 203, 449-452.
[74] A. Benninghoven, B. Hagenhoff, R. Kock, G. Assman and M. Walter In 5.4 Peptide Analysis by Time-of-flight Secondary Ion, Methods in Protein Sequence Analysis: Proceedings of the 7th International Conference, Berlin, July 3–8, 1988, Springer Science & Business Media: 2012; p 199.
[75] http://www.sigmaaldrich.com/catalog/product/sigma/a4440. Sigma-Aldrich.
[76] http://www.sigmaaldrich.com/catalog/product/sigma/g5386. Sigma-Aldrich.
[77] http://www.sigmaaldrich.com/catalog/product/sigma/p1319. Sigma-Aldrich.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔