|
[1] Gordon E. Moore. Cramming more components onto integrated circuits. P IEEE 86 (1) (1998) 82~85 [2] John Robertson. High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics 69 (2006) 327~396 [3] International technology roadmap for semiconductors. (2013) [4] M Houssa and M M Heyns, High-k gate dielectrics. IOP Publishing Ltd (2004) [5] J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R.L. Van Meirhaeghe, C. Detavernier. Atomic layer deposition of titanium nitride from TDMAT precursor. Microelectronic Engineering 86 (2009) 72~77 [6] Gang He, Liqiang Zhu, Zhaoqi Sun, Qing Wan, Lide Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology. Progress in Materials Science 56 (2011) 475~572 [7] J. Westlinder. Variable work function in MOS capacitors utilizing nttrogen-controlled TiN_x gate electrodes. Microelectronic Engineering 75 (2004) 389~396 [8] John Robertson. Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science and Technology B 18, (2000) 1785 [9] J. Robertson, High dielectric constant oxides. The European Physical Journal Applied Physics 28, (2004) 265~291 [10] K. J. Hubbard and D. G. Schlom. Thermodynamic stability of binary oxides in contact with silicon. Journal of Materials Research (1996) [11] Steven M. George. Atomic Layer Deposition: An Overview. American Chemical Society 110 (2010), 111~131 [12] Markku Leskela. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409 (2002) 138~146 [13] Riikka L. Puurunen. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics 97, (2005):12, pp. 121301~121301-52 [14] Hongtao Wang. Atomic Layer Deposition of Oxides for Microelectronics. (Dissertation) (2009) [15] LU Wei-Er, DONG Ya-Bin, LI Chao-Bo, XIA Yang, LI Nan. Research Progress on Growth Rate Controlling of Atomic Layer Deposition. Journal of Inorganic Materials (2014), 29(4): 345~351 [16] Thaddeus G. Dziura, et al. Measurement of high-k and metal film thickness on FinFET sidewalls using scatterometry. Proceeding of Spiedigitallibrary Vol. 6922 (2008) [17] Plerre Caubet, et al. Low-Temperature Low-Resistivity PEALD TiN Using TDMAT under Hydrogen Reducing Ambient. Journal of the Electrochemical Society 155(8) (2008), H625~H632 [18] Juan Carlos F. Rodriguez-Reyes and Andrew V. Teplyakov. Surface Transamination Reaction for Tetrakis(dimethylamido)titanium with NH_X-Terminated Si (100) Surfaces. Journal of Physical Chemistry C (2007), 111, 16498~16505 [19] Hyungjun Kim. Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 519 (2011) 6639~6644 [20] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. Journal of Vacuum Science & Technology A 29, 050801 (2011) [21] Hiroyuki YOSHIKI and Yasuhiro HORIIKE. Capacitively Coupled Microplasma Source on a Chip at Atmospheric Pressure. Japan Journal of Applied Physics Vol. 40 (2001) pp. L360~L362 [22] A. Bass, C. Chevalier, and N. W. Blades. A capacitively coupled microplasma (CC mu P) formed in a channel in a quartz wafer. Journal of Analytical Atomic Spectrometry Volume 16, (2001) pp. 919-921 [23] 經濟部工業局產業資訊網-電漿反應器及原理 (2016) [24] 楊翊璿 中空陰極電漿源模態轉換之研究 (2013) [25] Dry Etching of InP Based Materials using High Density Inductively Coupled Plasma (ICP) by Oxford Instruments Plasma Technology. AZoNano (2010) [26] K.H. Becker, K.H. Schoenbach and J.G. Eden. Journal of Applied Physics 39 (2006) R55~R70. [27] Yi-Jen, Tsai. Study of Metal-Oxide-Semiconductor Capacitors with Zirconium Oxide Gate Dielectrics on Si (100) and Si (110) Substrates Grown by Atomic Layer Deposition. (Master thesis) (2015) [28] S. Vales, et al. Influence of substrate pre-treatments by Xe^+ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel. Materials Chemistry and Physics 177 (2016) 156~163 [29] Ihl-Woo Kim, Sung-Jae Kim, Do-Heyoung Kim, Heegweon Woo, Man-Yong Park and Shi-Woo Rhee. Fourier Transform Infrared Spectroscopy Studies on Thermal Decomposition of Tetrakis-dimethyl-amido Zirconium for Chemical Vapor Deposition of ZrN. Korean Chemical Engineering 21(6), (2004) 1256~1259 [30] Jhih-Jie Huang, et al. Double nitridation of crystalline ZrO_2/Al_2 O_3 buffer gate stack with high capacitance, low leakage and improved thermal stability. Applied Surface Science 330 (2015) 221~227 [31] M Houssa and M M Heyns, High-k gate dielectrics. IOP Publishing Ltd (2004) [32] J. Robertson, High dielectric constant oxides. The European Physical Journal Applied Physics 28, (2004) 265~291 [33] J. K. Schaeffer, et al. Physical and electrical properties of metal gate electrodes on HfO_2 gate dielectrics. Journal of Vacuum Science & Technology B 21(2003) , 11 [34] Yongxun Liu, et al. Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication. IEEE transactions on nanotechnology Vol. 5, No. 6, (2006) [35] R. Singanamalla, et al. On the Impact of TiN Film Thickness Variations on the Effective Work Function of Poly-Si/TiN/SiO_2 and Poly-Si/TiN/HfSiON Gate Stacks. IEEE electron device letters Vol. 27, No.5 (2006) [36] Yongxun Liu, Takahiro Kamei. Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor Fabrication. Japanese Journal of Applied Physics 49 (2010) 06GH18 [37] Jhih-Jie Huang. Study of Nitrogen-doped Crystalline High-K/Metal Gate Stacks Prepared by Remote Plasma Atomic Layer Deposition. (Dissertation) (2014) [38] Ma Xueli, et al. An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness. Journal of Semiconductors Vol. 35, NO. 9 (2014) [39] Gang He, Liqiang Zhu, Zhaoqi Sun, Qing Wan, Lide Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology. Progress in Materials Science 56 (2011) 475~572 [40] F. Fillot, et al. Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH_3. Microelectronic Engineering 82 (2005) 248~253 [41] Yee-Chia Yeo, Tsu-Jae King, and Chenming Hu. Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. Journal of Applied Physics 92, (2002) 7266 [42] Christopher C, et al. Fermi-Level Pinning at the Polysilicon/Metal-Oxide Interface-Part II. IEEE transactions on electron devices Vol. 51, No. 6 (2004) [43] J. Westlinder. Variable work function in MOS capacitors utilizing nitrogen-controlled TiN_x gate electrodes. Microelectronic Engineering 75 (2004) 389~396 [44] Z.C.Yang, A.P.Huang, L Yan, Z.S. Xiao, X.W. Zhang, Paul K.Chu, and W.W. Wang. Role of interface dipole in metal gate high-k effective work function modulation by aluminum incorporation. Applied Physics Letters 94 (2009) [45] L.P.B.Lima, H.F.W.Dekkers, J.G.Lisoni, J.A.Diniz, S.Van Elshocht, and S.De Gendt. Metal gate work function tuning by Al incorporation in TiN. Journal of Applied Physics 115 (2014) [46] Matthieu Charbonnier, et al. Measurement of Dipoles/Roll-off/Work Functions by Coupling CV and IPE and Study of Their Dependence on Fabrication Process. IEEE transactions on electron devices Vol. 57, no. 8, (2010)
|