跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林益平
研究生(外文):Yi-Ping Lin
論文名稱:高介電係數二氧化鋯/氮化鈦金屬閘極堆疊之研究
論文名稱(外文):Study of ZrO2/TiN High-K/Metal Gate Stacks
指導教授:陳敏璋
指導教授(外文):Miin-Jang Chen
口試委員:廖洺漢吳肇欣李峻霣
口試委員(外文):Ming-Han LiaoChao-Hsin WuJiun-Yun Li
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:原子層沉積技術二氧化鋯氮化鈦功函數電漿處理金屬閘極
外文關鍵詞:Atomic layer deposition (ALD)zirconium dioxide (ZrO2)titanium nitride (TiN)work functionplasma treatmentmetal gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體產業的發展,電晶體的尺度越來越小,傳統的二氧化矽(silicon dioxide)閘極介電層逐漸不符合半導體技術節點(technology node)的需求,因此須由高介電常數材料取代二氧化矽作為金氧半場效應電晶體(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)的閘極介電層。本論文利用原子層沉積技術(Atomic Layer Deposition, ALD)成長二氧化鋯(zirconium dioxide)薄膜,探討利用氬氣電漿(argon plasma)進行處理的二氧化鋯閘極介電層,所呈現的電性表現。此外,近年來,氮化鈦(titanium nitride)被提出可以作為金屬氧化物半導體(Metal Oxide Semiconductor, MOS)元件的金屬閘極(metal gate)。因此,本研究進一步探討在此二氧化鋯閘極介電層之上,疊上一層氮化鈦薄膜作為金屬閘極,其MOS元件的電性表現。另外,為了達成高效能(high performance)的金屬氧化物半導體電晶體,金屬閘極的功函數希望可以調整到接近矽半導體的傳導帶(conduction band)(4.1 eV)或價電帶(valence band)(5.2 eV),本論文藉由氮化鈦作為金屬閘極,我們調整並量測氮化鈦在二氧化鋯閘極介電層的功函數值,期許可以調整金屬的功函數,達到nMOS或pMOS所需的要求。

With the development of the semiconductor industry, the feature size of the transistors continues shrinking .The traditional SiO2 gate oxide does not fulfill the requirement of technology node. Therefore, the high-k materials was substituted for the conventional SiO2 as the gate dielectric of metal-oxide-semiconductor (MOS) devices. In this thesis, ultrathin ZrO2 dioxide was deposited by atomic layer deposition (ALD) and the argon plasma treatment was used to tailor the electrical properties of the ZrO2 gate dielectric. Moreover, in recent years, it has been reported that TiN is capable of being used as metal gate in MOSFET. Thus, a layer of TiN was deposited by ALD on the ZrO2 gate dielectric as the metal and the electrical characteristics of the MOS device were investigated. Besides, for high performance MOS transistor, the effective work function of metal gate is expected to be close to the conduction band (4.1eV) or valence band (5.2eV) of the silicon. Thus the effective work function of TiN was also modulated and measured in this study.

致謝 III
中文摘要 IVV
Abstract V
目錄 VII
圖目錄 VIIII
表目錄 X
第一章 簡介 1
1.1 研究動機 1
1.2 高介電係數材料 3
1.3 原子層沉積技術 6
1.4 TiN基本性質 10
1.4.1 TiN基本結構 10
1.4.2 原子層沉積成長TiN薄膜 11
1.5 論文導覽 17
1.6 參考文獻 18
第二章 二氧化鋯電漿處理電性表現 20
2.1 簡介 20
2.2 實驗步驟 21
2.2.1 TDMAZ前驅物介紹 21
2.2.2 ZrO2 ALD製程 22
2.2.3 電漿處理ZrO2的製程種類 25
2.3 實驗結果與討論 27
2.3.1 ZrO2電性 27
2.3.2 氬氣電漿處理ZrO2電性 30
2.4 結論 36
2.5 參考文獻 38
第三章 氮化鈦疊二氧化鋯電性表現 39
3.1 簡介 39
3.2 實驗步驟 39
3.2.1 TiN疊ZrO2製程與結構 39
3.2.2 TiN於不同ZrO2界面處理的製程 41
3.3 實驗結果與討論 42
3.4 結論 49
3.5 參考文獻 50
第四章 氮化鈦疊二氧化鋯調整功函數 51
4.1 簡介 51
4.2 實驗步驟 52
4.2.1 Pt/TiN/SiO2之功函數 52
4.2.2 Pt/TiN/ZrO2/SiO2之功函數 54
4.3 實驗結果與討論 54
4.3.1 Pt/TiN/SiO2之功函數 54
4.3.2 Pt/TiN/ZrO2/SiO2之功函數 59
4.4 結論 63
4.5 參考文獻 65
第五章 總結 67

[1] Gordon E. Moore. Cramming more components onto integrated circuits. P IEEE 86 (1) (1998) 82~85
[2] John Robertson. High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics 69 (2006) 327~396
[3] International technology roadmap for semiconductors. (2013)
[4] M Houssa and M M Heyns, High-k gate dielectrics. IOP Publishing Ltd (2004)
[5] J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R.L. Van Meirhaeghe, C. Detavernier. Atomic layer deposition of titanium nitride from TDMAT precursor. Microelectronic Engineering 86 (2009) 72~77
[6] Gang He, Liqiang Zhu, Zhaoqi Sun, Qing Wan, Lide Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology. Progress in Materials Science 56 (2011) 475~572
[7] J. Westlinder. Variable work function in MOS capacitors utilizing nttrogen-controlled TiN_x gate electrodes. Microelectronic Engineering 75 (2004) 389~396
[8] John Robertson. Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science and Technology B 18, (2000) 1785
[9] J. Robertson, High dielectric constant oxides. The European Physical Journal Applied Physics 28, (2004) 265~291
[10] K. J. Hubbard and D. G. Schlom. Thermodynamic stability of binary oxides in contact with silicon. Journal of Materials Research (1996)
[11] Steven M. George. Atomic Layer Deposition: An Overview. American Chemical Society 110 (2010), 111~131
[12] Markku Leskela. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409 (2002) 138~146
[13] Riikka L. Puurunen. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics 97, (2005):12, pp. 121301~121301-52
[14] Hongtao Wang. Atomic Layer Deposition of Oxides for Microelectronics. (Dissertation) (2009)
[15] LU Wei-Er, DONG Ya-Bin, LI Chao-Bo, XIA Yang, LI Nan. Research Progress on Growth Rate Controlling of Atomic Layer Deposition. Journal of Inorganic Materials (2014), 29(4): 345~351
[16] Thaddeus G. Dziura, et al. Measurement of high-k and metal film thickness on FinFET sidewalls using scatterometry. Proceeding of Spiedigitallibrary Vol. 6922 (2008)
[17] Plerre Caubet, et al. Low-Temperature Low-Resistivity PEALD TiN Using TDMAT under Hydrogen Reducing Ambient. Journal of the Electrochemical Society 155(8) (2008), H625~H632
[18] Juan Carlos F. Rodriguez-Reyes and Andrew V. Teplyakov. Surface Transamination Reaction for Tetrakis(dimethylamido)titanium with NH_X-Terminated Si (100) Surfaces. Journal of Physical Chemistry C (2007), 111, 16498~16505
[19] Hyungjun Kim. Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 519 (2011) 6639~6644
[20] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. Journal of Vacuum Science & Technology A 29, 050801 (2011)
[21] Hiroyuki YOSHIKI and Yasuhiro HORIIKE. Capacitively Coupled Microplasma Source on a Chip at Atmospheric Pressure. Japan Journal of Applied Physics Vol. 40 (2001) pp. L360~L362
[22] A. Bass, C. Chevalier, and N. W. Blades. A capacitively coupled microplasma (CC mu P) formed in a channel in a quartz wafer. Journal of Analytical Atomic Spectrometry Volume 16, (2001) pp. 919-921
[23] 經濟部工業局產業資訊網-電漿反應器及原理 (2016)
[24] 楊翊璿 中空陰極電漿源模態轉換之研究 (2013)
[25] Dry Etching of InP Based Materials using High Density Inductively Coupled Plasma (ICP) by Oxford Instruments Plasma Technology. AZoNano (2010)
[26] K.H. Becker, K.H. Schoenbach and J.G. Eden. Journal of Applied Physics 39 (2006) R55~R70.
[27] Yi-Jen, Tsai. Study of Metal-Oxide-Semiconductor Capacitors with Zirconium Oxide Gate Dielectrics on Si (100) and Si (110) Substrates Grown by Atomic Layer Deposition. (Master thesis) (2015)
[28] S. Vales, et al. Influence of substrate pre-treatments by Xe^+ion bombardment and
plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel. Materials Chemistry and Physics 177 (2016) 156~163
[29] Ihl-Woo Kim, Sung-Jae Kim, Do-Heyoung Kim, Heegweon Woo, Man-Yong Park and Shi-Woo Rhee. Fourier Transform Infrared Spectroscopy Studies on Thermal Decomposition of Tetrakis-dimethyl-amido Zirconium for Chemical Vapor Deposition of ZrN. Korean Chemical Engineering 21(6), (2004) 1256~1259
[30] Jhih-Jie Huang, et al. Double nitridation of crystalline ZrO_2/Al_2 O_3 buffer gate stack with high capacitance, low leakage and improved thermal stability. Applied Surface Science 330 (2015) 221~227
[31] M Houssa and M M Heyns, High-k gate dielectrics. IOP Publishing Ltd (2004)
[32] J. Robertson, High dielectric constant oxides. The European Physical Journal Applied Physics 28, (2004) 265~291
[33] J. K. Schaeffer, et al. Physical and electrical properties of metal gate electrodes on HfO_2 gate dielectrics. Journal of Vacuum Science & Technology B 21(2003) , 11
[34] Yongxun Liu, et al. Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication. IEEE transactions on nanotechnology Vol. 5, No. 6, (2006)
[35] R. Singanamalla, et al. On the Impact of TiN Film Thickness Variations on the Effective Work Function of Poly-Si/TiN/SiO_2 and Poly-Si/TiN/HfSiON Gate Stacks. IEEE electron device letters Vol. 27, No.5 (2006)
[36] Yongxun Liu, Takahiro Kamei. Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor Fabrication. Japanese Journal of Applied Physics 49 (2010) 06GH18
[37] Jhih-Jie Huang. Study of Nitrogen-doped Crystalline High-K/Metal Gate Stacks Prepared by Remote Plasma Atomic Layer Deposition. (Dissertation) (2014)
[38] Ma Xueli, et al. An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness. Journal of Semiconductors Vol. 35, NO. 9 (2014)
[39] Gang He, Liqiang Zhu, Zhaoqi Sun, Qing Wan, Lide Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology. Progress in Materials Science 56 (2011) 475~572
[40] F. Fillot, et al. Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH_3. Microelectronic Engineering 82 (2005) 248~253
[41] Yee-Chia Yeo, Tsu-Jae King, and Chenming Hu. Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. Journal of Applied Physics 92, (2002) 7266
[42] Christopher C, et al. Fermi-Level Pinning at the Polysilicon/Metal-Oxide Interface-Part II. IEEE transactions on electron devices Vol. 51, No. 6 (2004)
[43] J. Westlinder. Variable work function in MOS capacitors utilizing nitrogen-controlled TiN_x gate electrodes. Microelectronic Engineering 75 (2004) 389~396
[44] Z.C.Yang, A.P.Huang, L Yan, Z.S. Xiao, X.W. Zhang, Paul K.Chu, and W.W. Wang. Role of interface dipole in metal gate high-k effective work function modulation by aluminum incorporation. Applied Physics Letters 94 (2009)
[45] L.P.B.Lima, H.F.W.Dekkers, J.G.Lisoni, J.A.Diniz, S.Van Elshocht, and S.De Gendt. Metal gate work function tuning by Al incorporation in TiN. Journal of Applied Physics 115 (2014)
[46] Matthieu Charbonnier, et al. Measurement of Dipoles/Roll-off/Work Functions by Coupling CV and IPE and Study of Their Dependence on Fabrication Process. IEEE transactions on electron devices Vol. 57, no. 8, (2010)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊