跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:粘巧穎
研究生(外文):Chiao-Yin Nien
論文名稱:微奈米尺度下鈦鎳形狀記憶合金機械性質之研究
論文名稱(外文):Mechanical properties of Ti–Ni Shape Memory Alloys in Micro-nano Scale
指導教授:薛承輝
指導教授(外文):Chun-Hway Hsueh
口試委員:吳錫侃林新智
口試委員(外文):Shyi-Kaan WuHsin-Chih Lin
口試日期:2015-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:79
中文關鍵詞:形狀記憶合金奈米壓痕超彈性應力誘發麻田散鐵微奈米柱壓縮試驗
外文關鍵詞:Shape memory alloyNanoindentationPseudoelasticityStress-induced martensitic transformationPillar compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
形狀記憶合金的超彈性行為是由於結晶可逆之熱彈性麻田散體變態,雖然這個性質在宏觀尺度下已經被廣泛研究,但是在微奈米尺度下關於超彈性行為的研究卻很少,由於微奈米機電的發展促使形狀記憶合金超彈性行為在微奈米尺度下被探討,因此本研究為在微奈米尺度下觀察其力學及相變態行為,製備之試片為三種不同成分的鈦鎳形狀記憶合金,成分分別是Ti49.05Ni50.95, Ti49.49Ni49.71Fe0.8, Ti49.93Ni50.07的塊材,透過DSC量測相變態溫度,這些材料的沃斯田鐵相變態結束溫度分別是–29.2 ºC, 10.0 ºC, 95.1 ºC,並且利用XRD確認常溫下的相結構,在常溫下Ti49.05Ni50.95, Ti49.49Ni49.71Fe0.8利用奈米壓痕試驗機的圓錐針頭在不同力量時探討超彈性行為,Ti49.93Ni50.07在不同溫度下利用奈米壓痕試驗機探討不同程度之超彈性現象,除了利用奈米壓痕試驗研究區域超彈性,我們也執行微奈米柱壓縮試驗研究整體超彈性行為,最後利用不同大小的探針壓痕,觀察探針尺度效應對形狀記憶合金的超彈性之影響,本研究發現形狀記憶合金具有往微奈米機電領域發展的潛力,成為新一代的功能性微奈米元件。

Pseudoelasticity of shape memory alloy (SMA) results from the reversible thermoelastic martensitic transformation. Although this property has been studied extensively at the macroscale, the study of this pseudoelastic behavior at the micro-nano scale is sparse. Recent demands for micro- and nano-electro-mechanical systems (MEMS and NEMS) have prompted the studies of pseudoelasticity of SMA at the micro-nano scale. In the present study, we developed TiNi-based SMAs for applications at the micro-nano scale, such as the actuators. To achieve this, we processed three TiNi-based SMAs, Ti49.05Ni50.95, Ti49.49Ni49.71Fe0.8 and Ti49.93Ni50.07, which had different austenite finish temperatures of –29.2 ºC, 10.0 ºC and 95.1 ºC, respectively. Nanoindentations performed on Ti49.05Ni50.95 and Ti49.49Ni49.71Fe0.8 at room temperature and different peak loads revealed the pseudoelastic behavior. For Ti49.93Ni50.07, nanoindentations performed at various temperatures showed different degrees of pseudoelasticity because of the different amounts of stress-induced martensitic transformation taking place during the indentation process. In addition to performing nanoindentation to study the localized pseudoelastic behavior of TiNi-based SMAs at the nano scale, micropillar compression tests were also performed to study the global pseudoelastic behavior. The findings of this work demonstrate the potential of integrating TiNi-based SMAs into MEMS and NEMS components that exhibit pseudoelasticity which, in turn, would result in a new generation of functional micro- and nanodevices.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Shape Memory Alloy 3
2.2 Phase Transformation in TiNi binary SMAs 4
2.2.1 One-stage Phase Transformation 4
2.2.2 Two-stage Phase Transformation 4
2.3 Shape Memory Effect 5
2.4 Pseudoelasticity 6
2.5 Nanoindentation Test 6
2.5.1 Origin of Nanoindentation 6
2.5.2 Nanoindenter 7
2.5.3 Analytical Model of Nanoindentation 8
2.5.4 Application of Nanoindentation in Shape Memory Alloys – Pseudoelaticity 11
2.5.5 Application of Nanoindentation in Shape Memory Alloys – Pillar Compression 13
2.6 Hertzian Contact 16
2.7 Size Effects During Indentation 17
Chapter 3 Experimental Procedure 38
3.1 Materials and Preparation 38
3.2 Differential Scanning Calorimetry (DSC) 38
3.3 Scanning Electron Microscope (SEM) 39
3.4 X-ray Diffractometer 39
3.5 Electropolishing 39
3.6 Focused Ion Beam (FIB) 40
3.7 Nanoindentation Test 40
3.7.1 Nanoindenter Hardness 40
3.7.2 Pseudoelasticity Nanoindentation 41
3.7.3 Temperature-controlled Nanoindentation 41
3.7.4 Pillar Compression 41
Chapter 4 Results and Discussions 45
4.1 The DSC Results 45
4.2 XRD Results 46
4.3 OM and EBSD image observation 46
4.4 Hardness 46
4.5 Pseudoelasticity 47
4.5.1 51Ni and 1Fe 47
4.5.2 50Ni 51
4.6 Compression of 51Ni and 1Fe micropillars 52
4.7 Nanoindenter size effects on stress-induced martensitic transformation during nanoindentation 54
Chapter 5 Conclusions 73
REFERENCES 75

1.W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, Powder Neutron-Diffraction Study of Nickel Titanium Martensite, Journal of Physics F-Metal Physics, 13 (1983) L77-L81.
2.R.F. Hehemann, G.D. Sandrock, Relations between Premartensitic Instability and Martensite Structure in Tini, Scripta Metallurgica, 5 (1971) 801-805.
3.Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal-Structure of the Martensite in Ti-49.2 at-Percent-Ni Alloy Analyzed by the Single-Crystal X-Ray-Diffraction Method, Acta Metall Mater, 33 (1985) 2049-2056.
4.G.M. Michal, R. Sinclair, The Structure of Tini Martensite, Acta Crystallographica Section B-Structural Science, 37 (1981) 1803-1807.
5.S. Miyazaki, K. Otsuka, C.M. Wayman, The Shape Memory Mechanism Associated with the Martensitic-Transformation in Ti-Ni Alloys .2. Variant Coalescence and Shape Recovery, Acta Metall Mater, 37 (1989) 1885-1890.
6.S. Miyazaki, K. Otsuka, C.M. Wayman, The Shape Memory Mechanism Associated with the Martensitic-Transformation in Ti-Ni Alloys .1. Self-Accommodation, Acta Metall Mater, 37 (1989) 1873-1884.
7.M. Nishida, C.M. Wayman, T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 17 (1986) 1505-1515.
8.K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50 (2005) 511-678.
9.K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Physica Status Solidi a-Applied Research, 5 (1971) 457-470.
10.K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Characteristics of Martensitic Transformation in Tini and Memory Effect, Metallurgical Transactions, 2 (1971) 2583-2588.
11.G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metallurgical Transactions, 2 (1971) 2769-2781.
12.Wasilews.Rj, S.R. Butler, J.E. Hanlon, D. Worden, Homogeneity Range and Martensitic Transformation in Tini, Metallurgical Transactions, 2 (1971) 229-238.
13.A.J.M. Wood, T.W. Clyne, Measurement and modelling of the nanoindentation response of shape memory alloys, Acta Materialia, 54 (2006) 5607-5615.
14.Y.Q. Fu, H.J. Du, W.M. Huang, S. Zhang, M. Hu, TiNi-based thin films in MEMS applications: a review, Sensors and Actuators a-Physical, 112 (2004) 395-408.
15.Y. Bellouard, Shape memory alloys for microsystems: A review from a material research perspective, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 481 (2008) 582-589.
16.A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors and Actuators a-Physical, 158 (2010) 149-160.
17.C.P. Frick, S. Orso, E. Arzt, Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars, Acta Materialia, 55 (2007) 3845-3855.
18.J. San Juan, M.L. No, C.A. Schuh, Thermomechanical behavior at the nanoscale and size effects in shape memory alloys, Journal of Materials Research, 26 (2011) 2461-2469.
19.M.L. Bowers, X. Chen, M. De Graef, P.M. Anderson, M.J. Mills, Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals, Scripta Materialia, 78-79 (2014) 69-72.
20.J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Materialia, 58 (2010) 490-498.
21.D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, M.J. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals, Acta Materialia, 57 (2009) 3549-3561.
22.B.G. Clark, D.S. Gianola, O. Kraft, C.P. Frick, Size Independent Shape Memory Behavior of Nickel-Titanium, Advanced Engineering Materials, 12 (2010) 808-815.
23.C.P. Frick, B.G. Clark, A.S. Schneider, R. Maass, S. Van Petegem, H. Van Swygenhoven, On the plasticity of small-scale nickel-titanium shape memory alloys, Scripta Materialia, 62 (2010) 492-495.
24.K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics, 7 (1999) 511-528.
25.Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metall Mater, 33 (1985) 2049-2056.
26.S. Miyazaki, K. Otsuka, Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 17 (1986) 53-63.
27.Y.M. Zhou, J. Zhang, G.L. Fan, X.D. Ding, J. Sun, X.B. Ren, K. Ostsuka, Origin of 2-stage R-phase transformation in low-temperature aged Ni-rich Ti-Ni alloys, Acta Materialia, 53 (2005) 5365-5377.
28.P.D. Carlton G. Slough, A Study of the Nitinol Solid-Solid Transition by DSC, TA Instruments.
29.L. Bataillard, J.E. Bidaux, R. Gotthard, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 78 (1998) 327-344.
30.J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia, 50 (2002) 4255-4274.
31.A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys - an in-situ transmission electron microscopy investigation, Philosophical Magazine, 83 (2003) 339-363.
32.G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys, Acta Materialia, 52 (2004) 4351-4362.
33.D.Q. Xue, Y.M. Zhou, X.B. Ren, The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy, Intermetallics, 19 (2011) 1752-1758.
34.C.M. Wayman, Shape Memory Alloys, Mrs Bulletin, 18 (1993) 49-56.
35.C.M. Wayman, The Shape Memory Effect, Metals Forum, 4 (1981) 135-141.
36.C.M. Wayman, Shape Memory and Related Phenomena, Progress in Materials Science, 36 (1992) 203-224.
37.K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews, 31 (1986) 93-114.
38.T.A. Schroeder, C.M. Wayman, Pseudoelastic Effects in Cu-Zn Single-Crystals, Acta Metall Mater, 27 (1979) 405-417.
39.C.P. Frick, B.G. Clark, S. Orso, P. Sonnweber-Ribic, E. Arzt, Orientation-independent pseudoelasticity in small-scale NiTi compression pillars, Scripta Materialia, 59 (2008) 7-10.
40.W.C. Oliver, G.M. Pharr, Nanoindentation in materials research: Past, present, and future, Mrs Bulletin, 35 (2010) 897-907.
41.M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, 1 (1986) 601-609.
42.W.D. Nix, Mechanical-Properties of Thin-Films, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 20 (1989) 2217-2245.
43.P.E. Wierenga, A.J.J. Franken, Ultramicroindentation Apparatus for the Mechanical Characterization of Thin-Films, Journal of Applied Physics, 55 (1984) 4244-4247.
44.P.E.W. A. J. J. Franken, Indentation measurements on thin films, Philips Tech. Rev, 42 (1985) 85.
45.R.B. King, T.C. Osullivan, Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space, International Journal of Solids and Structures, 23 (1987) 581-597.
46.W.C. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal of Materials Research, 7 (1992) 1564-1583.
47.J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, Vickers Indentation Curves of Magnesium-Oxide (Mgo), Journal of Tribology-Transactions of the Asme, 106 (1984) 43-48.
48.K. Komvopoulos, X.G. Ma, Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy, Applied Physics Letters, 87 (2005) 263108.
49.X.G. Ma, K. Komvopoulos, In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films, Journal of Materials Research, 20 (2005) 1808-1813.
50.C. Liu, Y.P. Zhao, Q.P. Sun, T.X. Yu, Z.X. Cao, Characteristic of microscopic shape memory effect in a CuAlNi alloy by nanoindentation, Journal of Materials Science, 40 (2005) 1501-1504.
51.H.S. Zhang, K. Komvopoulos, Nanoscale pseudoelasticity of single-crystal Cu-Al-Ni shape-memory alloy induced by cyclic nanoindentation, Journal of Materials Science, 41 (2006) 5021-5024.
52.K. Sekido, T. Ohmura, T. Sawaguchi, M. Koyama, H.W. Park, K. Tsuzaki, Nanoindentation/atomic force microscopy analyses of epsilon-martensitic transformation and shape memory effect in Fe-28Mn-6Si-5Cr alloy, Scripta Materialia, 65 (2011) 942-945.
53.A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, A microcompression study of shape-memory deformation in U-13 at.% Nb, Scripta Materialia, 60 (2009) 890-892.
54.W.Y. Yan, Q.P. Sun, X.Q. Feng, L.M. Qian, Determination of transformation stresses of shape memory alloy thin films: A method based on spherical indentation, Applied Physics Letters, 88 (2006) 241912.
55.X.G. Ma, K. Komvopoulos, Nanoscale pseudoelastic behavior of indented titanium-nickel films, Applied Physics Letters, 83 (2003) 3773-3775.
56.X.G. Ma, K. Komvopoulos, Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation, Applied Physics Letters, 84 (2004) 4274-4276.
57.J. San Juan, M.L. No, C.A. Schuh, Nanoscale shape-memory alloys for ultrahigh mechanical damping, Nature Nanotechnology, 4 (2009) 415-419.
58.N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, H.E. Karaca, Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation, Acta Materialia, 60 (2012) 5670-5685.
59.C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, E. Arzt, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 489 (2008) 319-329.
60.C.P. Frick, T.W. Lang, K. Spark, K. Gall, Stress-induced martensitic transformations and shape memory at nanometer scales, Acta Materialia, 54 (2006) 2223-2234.
61.J. San Juan, M.L. Nó, C.A. Schuh, Superelasticity and Shape Memory in Micro- and Nanometer-scale Pillars, Advanced Materials, 20 (2008) 272-278.
62.C.P. Frick, S. Orso, E. Arzt, Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars, Acta Materialia, 55 (2007) 3845-3855.
63.T.L. Li, H. Bei, J.R. Morris, E.P. George, Y.F. Gao, Scale effects in convoluted thermal/spatial statistics of plasticity initiation in small stressed volumes during nanoindentation, Materials Science and Technology, 28 (2012) 1055-1059.
64.H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation, Physical Review B, 77 (2008) 060103(R).
65.M.H.W. Darel E. Hodgson, Robert J. Biermann, Shape Memory Alloys, ASM Handbook, 2 (1990) 897-902.
66.J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Materialia, 58 (2010) 3444-3458.
67.S. Miyazaki, K. Otsuka, Mechanical-Behavior Associated with the Premartensitic Rhombohedral-Phase Transition in a Ti50ni47fe3 Alloy, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 50 (1984) 393-408.
68.J. Olbricht, A. Yawny, J.L. Pelegrina, A. Dlouhy, G. Eggeler, On the Stress-Induced Formation of R-Phase in Ultra-Fine-Grained Ni-Rich NiTi Shape Memory Alloys, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42A (2011) 2556-2574.
69.A. Ishida, M. Sato, Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film, Acta Materialia, 51 (2003) 5571-5578.
70.S.G. Fedotov, The Shape Memory Effect and the Superelasticity of Alloys, Doklady Akademii Nauk Sssr, 290 (1986) 1115-1118.
71.J. Zhang, C. Somsen, T. Simon, X.D. Ding, S. Hou, S. Ren, X.B. Ren, G. Eggeler, K. Otsuka, J. Sun, Leaf-like dislocation substructures and the decrease of martensitic start temperatures: A new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti-Ni shape memory alloys, Acta Materialia, 60 (2012) 1999-2006.
72.K.L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge, United kingdom, 1985.
73.C.H. Hsueh, P. Miranda, Combined empirical-analytical method for determining contact radius and indenter displacement during Hertzian indentation on coating/substrate systems, Journal of Materials Research, 19 (2004) 2774-2781.
74.K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing, Scripta Materialia, 60 (2009) 749-752.
75.S. Eucken, T.W. Duerig, The Effects of Pseudoelastic Prestraining on the Tensile Behavior and 2-Way Shape Memory Effect in Aged Niti, Acta Metall Mater, 37 (1989) 2245-2252.
76.H. Tobushi, K. Tanaka, T. Hori, T. Sawada, T. Hattori, Pseudoelasticity of Tini Shape-Memory Alloy (Dependence on Maximum Strain and Temperature), Jsme Int J a-Mech M, 36 (1993) 314-318.
77.Y.Q. Fu, H.J. Du, Relaxation and recovery of stress during martensite transformation for sputtered shape memory TiNi film, Surf Coat Tech, 153 (2002) 100-105.
78.H.C. Lin, S.K. Wu, The Tensile Behavior of a Cold-Rolled and Reverse-Transformed Equiatomic Tini Alloy, Acta Metallurgica Et Materialia, 42 (1994) 1623-1630.
79.H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, The design of accurate micro-compression experiments, Scripta Materialia, 54 (2006) 181-186.
80.C.A. Schuh, J.K. Mason, A.C. Lund, Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments, Nature Materials, 4 (2005) 617-621.
81.J. San Juan, M.L. No, C.A. Schuh, Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars, Acta Materialia, 60 (2012) 4093-4106.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top