|
1.W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, Powder Neutron-Diffraction Study of Nickel Titanium Martensite, Journal of Physics F-Metal Physics, 13 (1983) L77-L81. 2.R.F. Hehemann, G.D. Sandrock, Relations between Premartensitic Instability and Martensite Structure in Tini, Scripta Metallurgica, 5 (1971) 801-805. 3.Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal-Structure of the Martensite in Ti-49.2 at-Percent-Ni Alloy Analyzed by the Single-Crystal X-Ray-Diffraction Method, Acta Metall Mater, 33 (1985) 2049-2056. 4.G.M. Michal, R. Sinclair, The Structure of Tini Martensite, Acta Crystallographica Section B-Structural Science, 37 (1981) 1803-1807. 5.S. Miyazaki, K. Otsuka, C.M. Wayman, The Shape Memory Mechanism Associated with the Martensitic-Transformation in Ti-Ni Alloys .2. Variant Coalescence and Shape Recovery, Acta Metall Mater, 37 (1989) 1885-1890. 6.S. Miyazaki, K. Otsuka, C.M. Wayman, The Shape Memory Mechanism Associated with the Martensitic-Transformation in Ti-Ni Alloys .1. Self-Accommodation, Acta Metall Mater, 37 (1989) 1873-1884. 7.M. Nishida, C.M. Wayman, T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 17 (1986) 1505-1515. 8.K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50 (2005) 511-678. 9.K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Physica Status Solidi a-Applied Research, 5 (1971) 457-470. 10.K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Characteristics of Martensitic Transformation in Tini and Memory Effect, Metallurgical Transactions, 2 (1971) 2583-2588. 11.G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metallurgical Transactions, 2 (1971) 2769-2781. 12.Wasilews.Rj, S.R. Butler, J.E. Hanlon, D. Worden, Homogeneity Range and Martensitic Transformation in Tini, Metallurgical Transactions, 2 (1971) 229-238. 13.A.J.M. Wood, T.W. Clyne, Measurement and modelling of the nanoindentation response of shape memory alloys, Acta Materialia, 54 (2006) 5607-5615. 14.Y.Q. Fu, H.J. Du, W.M. Huang, S. Zhang, M. Hu, TiNi-based thin films in MEMS applications: a review, Sensors and Actuators a-Physical, 112 (2004) 395-408. 15.Y. Bellouard, Shape memory alloys for microsystems: A review from a material research perspective, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 481 (2008) 582-589. 16.A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors and Actuators a-Physical, 158 (2010) 149-160. 17.C.P. Frick, S. Orso, E. Arzt, Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars, Acta Materialia, 55 (2007) 3845-3855. 18.J. San Juan, M.L. No, C.A. Schuh, Thermomechanical behavior at the nanoscale and size effects in shape memory alloys, Journal of Materials Research, 26 (2011) 2461-2469. 19.M.L. Bowers, X. Chen, M. De Graef, P.M. Anderson, M.J. Mills, Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals, Scripta Materialia, 78-79 (2014) 69-72. 20.J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Direct observation of the NiTi martensitic phase transformation in nanoscale volumes, Acta Materialia, 58 (2010) 490-498. 21.D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, M.J. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals, Acta Materialia, 57 (2009) 3549-3561. 22.B.G. Clark, D.S. Gianola, O. Kraft, C.P. Frick, Size Independent Shape Memory Behavior of Nickel-Titanium, Advanced Engineering Materials, 12 (2010) 808-815. 23.C.P. Frick, B.G. Clark, A.S. Schneider, R. Maass, S. Van Petegem, H. Van Swygenhoven, On the plasticity of small-scale nickel-titanium shape memory alloys, Scripta Materialia, 62 (2010) 492-495. 24.K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics, 7 (1999) 511-528. 25.Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metall Mater, 33 (1985) 2049-2056. 26.S. Miyazaki, K. Otsuka, Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 17 (1986) 53-63. 27.Y.M. Zhou, J. Zhang, G.L. Fan, X.D. Ding, J. Sun, X.B. Ren, K. Ostsuka, Origin of 2-stage R-phase transformation in low-temperature aged Ni-rich Ti-Ni alloys, Acta Materialia, 53 (2005) 5365-5377. 28.P.D. Carlton G. Slough, A Study of the Nitinol Solid-Solid Transition by DSC, TA Instruments. 29.L. Bataillard, J.E. Bidaux, R. Gotthard, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 78 (1998) 327-344. 30.J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia, 50 (2002) 4255-4274. 31.A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys - an in-situ transmission electron microscopy investigation, Philosophical Magazine, 83 (2003) 339-363. 32.G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys, Acta Materialia, 52 (2004) 4351-4362. 33.D.Q. Xue, Y.M. Zhou, X.B. Ren, The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy, Intermetallics, 19 (2011) 1752-1758. 34.C.M. Wayman, Shape Memory Alloys, Mrs Bulletin, 18 (1993) 49-56. 35.C.M. Wayman, The Shape Memory Effect, Metals Forum, 4 (1981) 135-141. 36.C.M. Wayman, Shape Memory and Related Phenomena, Progress in Materials Science, 36 (1992) 203-224. 37.K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews, 31 (1986) 93-114. 38.T.A. Schroeder, C.M. Wayman, Pseudoelastic Effects in Cu-Zn Single-Crystals, Acta Metall Mater, 27 (1979) 405-417. 39.C.P. Frick, B.G. Clark, S. Orso, P. Sonnweber-Ribic, E. Arzt, Orientation-independent pseudoelasticity in small-scale NiTi compression pillars, Scripta Materialia, 59 (2008) 7-10. 40.W.C. Oliver, G.M. Pharr, Nanoindentation in materials research: Past, present, and future, Mrs Bulletin, 35 (2010) 897-907. 41.M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, 1 (1986) 601-609. 42.W.D. Nix, Mechanical-Properties of Thin-Films, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 20 (1989) 2217-2245. 43.P.E. Wierenga, A.J.J. Franken, Ultramicroindentation Apparatus for the Mechanical Characterization of Thin-Films, Journal of Applied Physics, 55 (1984) 4244-4247. 44.P.E.W. A. J. J. Franken, Indentation measurements on thin films, Philips Tech. Rev, 42 (1985) 85. 45.R.B. King, T.C. Osullivan, Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space, International Journal of Solids and Structures, 23 (1987) 581-597. 46.W.C. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, Journal of Materials Research, 7 (1992) 1564-1583. 47.J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, Vickers Indentation Curves of Magnesium-Oxide (Mgo), Journal of Tribology-Transactions of the Asme, 106 (1984) 43-48. 48.K. Komvopoulos, X.G. Ma, Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy, Applied Physics Letters, 87 (2005) 263108. 49.X.G. Ma, K. Komvopoulos, In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films, Journal of Materials Research, 20 (2005) 1808-1813. 50.C. Liu, Y.P. Zhao, Q.P. Sun, T.X. Yu, Z.X. Cao, Characteristic of microscopic shape memory effect in a CuAlNi alloy by nanoindentation, Journal of Materials Science, 40 (2005) 1501-1504. 51.H.S. Zhang, K. Komvopoulos, Nanoscale pseudoelasticity of single-crystal Cu-Al-Ni shape-memory alloy induced by cyclic nanoindentation, Journal of Materials Science, 41 (2006) 5021-5024. 52.K. Sekido, T. Ohmura, T. Sawaguchi, M. Koyama, H.W. Park, K. Tsuzaki, Nanoindentation/atomic force microscopy analyses of epsilon-martensitic transformation and shape memory effect in Fe-28Mn-6Si-5Cr alloy, Scripta Materialia, 65 (2011) 942-945. 53.A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, A microcompression study of shape-memory deformation in U-13 at.% Nb, Scripta Materialia, 60 (2009) 890-892. 54.W.Y. Yan, Q.P. Sun, X.Q. Feng, L.M. Qian, Determination of transformation stresses of shape memory alloy thin films: A method based on spherical indentation, Applied Physics Letters, 88 (2006) 241912. 55.X.G. Ma, K. Komvopoulos, Nanoscale pseudoelastic behavior of indented titanium-nickel films, Applied Physics Letters, 83 (2003) 3773-3775. 56.X.G. Ma, K. Komvopoulos, Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation, Applied Physics Letters, 84 (2004) 4274-4276. 57.J. San Juan, M.L. No, C.A. Schuh, Nanoscale shape-memory alloys for ultrahigh mechanical damping, Nature Nanotechnology, 4 (2009) 415-419. 58.N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, H.E. Karaca, Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation, Acta Materialia, 60 (2012) 5670-5685. 59.C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, E. Arzt, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 489 (2008) 319-329. 60.C.P. Frick, T.W. Lang, K. Spark, K. Gall, Stress-induced martensitic transformations and shape memory at nanometer scales, Acta Materialia, 54 (2006) 2223-2234. 61.J. San Juan, M.L. Nó, C.A. Schuh, Superelasticity and Shape Memory in Micro- and Nanometer-scale Pillars, Advanced Materials, 20 (2008) 272-278. 62.C.P. Frick, S. Orso, E. Arzt, Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars, Acta Materialia, 55 (2007) 3845-3855. 63.T.L. Li, H. Bei, J.R. Morris, E.P. George, Y.F. Gao, Scale effects in convoluted thermal/spatial statistics of plasticity initiation in small stressed volumes during nanoindentation, Materials Science and Technology, 28 (2012) 1055-1059. 64.H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation, Physical Review B, 77 (2008) 060103(R). 65.M.H.W. Darel E. Hodgson, Robert J. Biermann, Shape Memory Alloys, ASM Handbook, 2 (1990) 897-902. 66.J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Materialia, 58 (2010) 3444-3458. 67.S. Miyazaki, K. Otsuka, Mechanical-Behavior Associated with the Premartensitic Rhombohedral-Phase Transition in a Ti50ni47fe3 Alloy, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 50 (1984) 393-408. 68.J. Olbricht, A. Yawny, J.L. Pelegrina, A. Dlouhy, G. Eggeler, On the Stress-Induced Formation of R-Phase in Ultra-Fine-Grained Ni-Rich NiTi Shape Memory Alloys, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42A (2011) 2556-2574. 69.A. Ishida, M. Sato, Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film, Acta Materialia, 51 (2003) 5571-5578. 70.S.G. Fedotov, The Shape Memory Effect and the Superelasticity of Alloys, Doklady Akademii Nauk Sssr, 290 (1986) 1115-1118. 71.J. Zhang, C. Somsen, T. Simon, X.D. Ding, S. Hou, S. Ren, X.B. Ren, G. Eggeler, K. Otsuka, J. Sun, Leaf-like dislocation substructures and the decrease of martensitic start temperatures: A new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti-Ni shape memory alloys, Acta Materialia, 60 (2012) 1999-2006. 72.K.L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge, United kingdom, 1985. 73.C.H. Hsueh, P. Miranda, Combined empirical-analytical method for determining contact radius and indenter displacement during Hertzian indentation on coating/substrate systems, Journal of Materials Research, 19 (2004) 2774-2781. 74.K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing, Scripta Materialia, 60 (2009) 749-752. 75.S. Eucken, T.W. Duerig, The Effects of Pseudoelastic Prestraining on the Tensile Behavior and 2-Way Shape Memory Effect in Aged Niti, Acta Metall Mater, 37 (1989) 2245-2252. 76.H. Tobushi, K. Tanaka, T. Hori, T. Sawada, T. Hattori, Pseudoelasticity of Tini Shape-Memory Alloy (Dependence on Maximum Strain and Temperature), Jsme Int J a-Mech M, 36 (1993) 314-318. 77.Y.Q. Fu, H.J. Du, Relaxation and recovery of stress during martensite transformation for sputtered shape memory TiNi film, Surf Coat Tech, 153 (2002) 100-105. 78.H.C. Lin, S.K. Wu, The Tensile Behavior of a Cold-Rolled and Reverse-Transformed Equiatomic Tini Alloy, Acta Metallurgica Et Materialia, 42 (1994) 1623-1630. 79.H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, The design of accurate micro-compression experiments, Scripta Materialia, 54 (2006) 181-186. 80.C.A. Schuh, J.K. Mason, A.C. Lund, Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments, Nature Materials, 4 (2005) 617-621. 81.J. San Juan, M.L. No, C.A. Schuh, Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars, Acta Materialia, 60 (2012) 4093-4106.
|