跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王霆鈞
研究生(外文):Ting-Chun Wang
論文名稱:聚苯胺/量子點複材之製備、性質及在超級電容之應用
論文名稱(外文):Preparation and Properties of polyaniline/quantum dotsnanocomposites and their applications on supercapacitor
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
口試委員:蔡豐羽何國川
口試委員(外文):Feng-Yu TsaiKuo-Chuan Ho
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:162
中文關鍵詞:超級電容聚苯胺化學沉積可撓石墨箔石墨烯量子點氧化釕氧化石墨烯離子液體
外文關鍵詞:SupercapacitorPolyanilineChemical DepositionFlexible Graphite FoilGraphene Quantum DotsRuthenium OxideGraphene OxideIonic Liquid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用化學聚合的方式在石墨箔碳材上成長導電高分子聚苯胺(PANI)作為超級電容的電極。首先以不同濃度苯胺氧化聚合24小時形成PANI,由SEM觀測到PANI表面形態,並以TGA量測電極上PANI的重量,FTIR鑑定表面官能基,再以各式電化學量測,包括恆電流充放電、循環伏安法和交流阻抗分析來鑑定電容特性;發現以0.01M合成的PANI結構為奈米針狀陣列且擁有最大的比表面積及最佳的比電容值,在1A/g電流密度下電容值為740.54 F/g,20 A/g下為286.22 F/g;此最佳化的條件將作為製備後續吸附量子點的PANI電極,量子點材料包括石墨烯量子點及氧化釕量子點,希望能增進電極的電容表現。
實驗採用改良後的Hummers法,以100°C,120°C,140°C三種反應溫度製備出尺寸不同,氧化程度也不同的GQDs-1,GQDs-2,GQDs-3。從TEM觀測得到平均尺寸分別為7nm,4nm,3.5nm;DLS觀察到的平均尺寸為7.7 nm,4.7nm,3.3 nm,兩者結果差不多;由AFM得知GQDs-1,GQDs-3為1-3層堆疊,而GQDs-2濃度較高有1-5層堆疊出現;三種GQDs以PL測量,隨激發波長的增加放射波長均產生紅移;由UV證實在280nm及340nm均有一吸收峰,此結果和PLE互相呼應;由XPS及反射式 FTIR鑑定出,以GQDs-3的C=O峰值最低,還原程度最高造成導電性上升;由反射式 FTIR 得知3256cm-1 的primary amine峰值增強亦證明GQDs成功吸附PANI產生氫鍵,使1211cm-1和1267 cm-1的C-N鍵訊號被遮蔽。在電性方面,GQDs-3/PANI電極在1 A/g下電容值為907.38 F/g,在20A/g下仍有315.32 F/g,為三種GQDs吸附後電容表現最好的電極;透過CV圖積分面積計算亦證明GQDs-3/PANI比電容值最高,代表GQDs-3的導電性較好;由阻抗分析發現GQDs吸附PANI電極均能使的電荷轉移電阻(Rect)下降, 增進電極介面的氧化還原反應。
此外,實驗利用水熱法製備RuO2結晶水合物,以量子點形式吸附於PANI電極表面以增進電容值。從TEM得知RuO2量子點平均尺寸為4nm,和DLS觀察相近;由FTIR證明在502cm¬-1,608 cm¬-1有Ru的特徵峰,且RuO2因含有結晶水會和PANI產生大量氫鍵,從3401cm-1的涵蓋含水的O-H的特徵峰非常寬可見得;由TEM觀測到RuO2量子點成功吸附在PANI表面;而製備的RuO2/PANI複合電極電容值在1 A/g下為1098.14 F/g,在20A/g下為504 F/g;且隨電流密度的增加,RuO2/PANI電極的電容表現比GQDs-3/PANI更好;由Ragone plot結果顯示三極式RuO2/PANI和GQDs-3/PANI在1A/g電流密度,功率密度為350W/kg下,能量密度分別為74.72、61.73Wh/Kg。
最後,實驗採用比電容表現最佳GQDs-3 /PANI及RuO2/PANI複合電極,搭配GO/EMITFSI電解質組裝成二極式作為商用電容器。經過4wt%氧化石墨稀(GO)摻雜EMITFSI離子液體時比電容值達到最佳化,RuO2/PANI、GQDs-3/PANI其值在1 A/g時,為231.21 F/g,192.79 F/g。透過1000次充放電長效循環測試,結果顯示二極式RuO2/PANI電極的電容保持率為58.2%,電容保持率比三極測試來的高。由Ragone plot結果顯示,在1A/g電流密度,功率密度為350W/kg下,二極式RuO2/PANI 和GQDs-3/PANI為15.72、13.12 Wh/Kg。


This thesis utillized the chemical oxidation method to synthesize the polyaniline (PANI) nanowires in array on graphite foil employed for supercapacitor electrodes. First, after polymerized for 24 h with different concentration of aniline, the surface morphology was investigated by SEM, mass weight on graphite foil was estimated by TGA, and surface functional groups were characterized by FTIR-ATR. Electrochemical measurements including Galvanostatic charge discharge, cyclic voltammetry and electrochemical impedance were employed to characterize their specific capacitance. When the concentration of aniline was 0.01 M, the PANI nanowire array showed the highest surface area with the optimized specific capacitance reaching 740.54 F/g at 1 A/g, and 286.22/g at 20 A/g. The optimized electrodes were then used to adsorb the quantum dot materials including graphene quantum dots (GQDs) and ruthenium oxide(RuO2) for further studies.
The modified Hummers method was used to fabricate the GQDs-1, GQDs-2, GQDs-3 by varying the hydrothermal reaction temperature at 100°C, 120°C and 140°C, respectively for 12 h. Their sizes of 7, 4, and 3.5 nm measured by TEM were similar to those measured by DLS (7.7 nm for GQDs-1 , 4.7 nm for GQDs-2. and 3.3 nm for GQDs-3 ). The PL spectra showed that with increasing the excitation wavelength, the emission peak shifted to longer wavelengths. AFM observations revealed that GQDs-1 and GQDs-3 consisted of 1~3 layers in contrast to 1~5 layers for GQDs-2. According to the XPS results, the percentage of C=O bonds decreased with higher reaction temperature, which is consistant with the FTIR observation. Furthermore, the ATR-FTIR also revealed that the peak intensity at 3256 cm-1 contributed by primary amine increased as hydrogen bonds formed between GQDs and PANI, leading to the disappearance of C-N bonds peak. Next, the GQDs/PANI electrodes were prepared by immersing PANI electrodes in diluted GQDs suspension. By dipping PANI electrode in 1 mg/ml GQDs, the best performance of GQDs-3/PANI electrode was obtained with the specific capacitance reaching 907.38 F/g at 1 A/g, and 315.32 F/g at 20A/g, which are also supported by the CV data. EIS measurements confirmed that the electron charge transfer resistances for PANI electrode were decreased significantly as the PANI electrode was incorporated with GQDs-3.
Hydrous RuO2·xH2O quantum dots were fabricated by hydrothermal process. The average particle size was about 4 nm as estimated by TEM, similar to the DLS measurement. As they were adsorbed by PANI, the FTIR spectrum showed that the peak at 3485cm-1 became broader, indicating the formation of hydrogen bonds between RuO2·xH2O and PANI. As to the performance of RuO2/PANI electrodes, the best specific capacitance of RuO2/PANI electrode reached to 1098.14 F/g at 1 A/g and 504 F/g at 20A/g, which are better than that of the GQDs-3/PANI electrodes. The energy density of RuO2/PANI electrode reached to 74.72 Wh/kg with 350W/kg power density at 1 A/g compared to 61.73Wh/kg for GQDs-3/PANI electrodes.
Two-electrode confuguration supercapapcitor were also fabricated by using GO/EMITFSI ionic liquid composite electrolyte system. When 4 wt% of GO was incorporated with EMITFSI, the electrolyte system became immovable. RuO2/PANI and GQDs-3/PANI electrodes showed the best specific capacitance of 231.21 and 192.79 F/g, respectively at 1 A/g. After charge-discharge test for 1000 cycles, two-electrode configuration with RuO2/PANI electrode can retain 58.2% specific capacitance, better than that with three-electrode configuration. From the Ragone plot, the energy density reached to 15.72 Wh/Kg for RuO2/PANI electrode compared to 13.12 Wh/Kg for GQDs-3/PANI electrodes in two-electrode system.


致謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xxi
第一章 緒論 1
1.1前言 1
1.2研究目的與動機 1
第二章 文獻回顧 3
2.1超級電容的發展 3
2.2超級電容的結構及特性 4
2.3超級電容分類 7
2.3.1電雙層電容 7
2.3.2擬電容 9
2.4超級電容的電化學測量 10
2.4.1循環伏安法 10
2.4.2恆電流充放電測試法 10
2.4.3交流阻抗法 12
2.5電極材料 15
2.5.1 碳材 15
2.5.2導電高分子 18
2.5.3金屬氧化物 22
2.6電解質 24
2.6.1液態電解質 24
2.6.2膠態電解質 25
第三章 實驗方法與設備 26
3.1實驗藥品器材 26
3.2實驗儀器設備 28
3.3 PANI電極製備及性質分析 29
3.3.1聚苯胺的純化 29
3.3.2含有苯胺單體的過氯酸水溶液製備 29
3.3.3石墨箔 (graphite foil)的表面形貌及相關資訊 29
3.3.4聚苯胺化學聚合在石墨箔基板的電極製備 30
3.3.5聚苯胺/石墨箔片的SEM試片準備 31
3.3.6聚苯胺/石墨箔的TGA樣品準備 31
3.4石墨烯量子點(GQDs)的製備和性質分析 32
3.4.1石墨稀量子點的樣品準備 32
3.4.2 TEM樣品製作 33
3.4.3 PL樣品製作 33
3.4.4 DLS樣品製作 33
3.4.5 AFM樣品製作 33
3.4.6 XPS樣品製作 33
3.4.7 FTIR樣品製作 34
3.4.8 GQDs吸附PANI電極製備 34
3.5氧化釕量子點(RuO2)的製備和性質分析 34
3.5.1 RuO2的樣品準備 34
3.5.2 RuO2吸附聚苯胺電極製備 35
3.6 GO/EMITFSI膠態電解質製備 35
3.6.1 GO製備 35
3.6.2 GO膠化EMITFSI離子液體 35
3.7電化學測試 36
3.7.1三極測試 36
3.7.2對稱式二極測試 36
第四章 結果與討論 37
4.1 石墨箔基板成長不同濃度聚苯胺 37
4.1.1 PANI在石墨箔基板上的質量計算 37
4.1.2 PANI的FTIR-ATR鑑定 41
4.1.3 PANI在石墨箔基板上的表面形態 42
4.1.4純PANI的電容表現 50
4.1.5純PANI的CV曲線分析 55
4.1.6純PANI的電化學阻抗分析 58
4.2 GQDs合成及性質分析 61
4.2.1 GQDs-1的尺寸及厚度性質分析 62
4.2.2 GQDs-2的尺寸及厚度性質分析 64
4.2.3 GQDs-3的尺寸及厚度性質分析 66
4.2.4 GQDs-1,GQDs-2,GQDs-3的PL性質比較 69
4.2.5 GQDs-1,GQDs-2,GQDs-3的UV-vis吸收光譜 73
4.2.6 GQDs-1,GQDs-2,GQDs-3的XPS性質比較 74
4.2.7 GQDs-1,GQDs-2,GQDs-3吸附PANI的TEM圖 77
4.2.8 GQDs/PANI的FTIR-ATR鑑定 80
4.3 GQDs/PANI的電化學分析 81
4.3.1 GQDs-1/PANI的電容表現 81
4.3.2 GQDs-1/PANI的CV圖分析 86
4.3.3 GQDs-1/PANI的電化學阻抗分析 89
4.3.4 GQDs-2/PANI的電容表現 92
4.3.5 GQDs-2/PANI的CV圖分析 97
4.3.6 GQDs-2/PANI的電化學阻抗分析 100
4.3.7 GQDs-3/PANI的電容表現 103
4.3.8 GQDs-3/PANI的CV圖分析 107
4.3.9 GQDs-3/PANI的電化學阻抗分析 113
4.4 RuO2合成及結構分析 116
4.4.1 RuO2的尺寸及厚度性質分析 116
4.4.2 RuO2吸附PANI的TEM圖 118
4.4.3 RuO2/PANI的FTIR-ATR鑑定 119
4.5 RuO2/PANI的電化學分析 120
4.5.1 RuO2/PANI的電容表現 121
4.5.2 RuO2/PANI的CV圖分析 125
4.5.3 RuO2/PANI的電化學阻抗分析 129
4.6二極對稱式複合電極的電化學分析 133
4.6.1 二極對稱式GQDs-3/PANI的電容表現 134
4.6.2 二極式GQDs-3/PANI複合電極的CV圖分析 137
4.6.3 二極式GQDs-3/PANI的電化學阻抗分析 140
4.6.4 二極對稱式RuO2/PANI的電容表現 143
4.6.5 二極式RuO2/PANI的CV圖分析 147
4.6.6 二極式RuO2/PANI的電化學阻抗分析 151
4.7長效性循環分析 154
4.8 Ragone plot 155
第五章 結論 156
第六章 參考文獻 158


1.P.-H. Su, 國立臺灣大學材料科學與工程學研究所學位論文, 2015, 1-141.
2.Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei and G. Shi, Physical Chemistry Chemical Physics, 2013, 15, 9907-9913.
3.K.-H. Chang, C.-C. Hu and C.-Y. Chou, Chemistry of materials, 2007, 19, 2112-2119.
4.P. Simon and Y. Gogotsi, Nature materials, 2008, 7, 845-854.
5.B. E. Conway, Journal of the Electrochemical Society, 1991, 138, 1539-1548.
6.Wikipedia contributors, Supercapacitor, https://en.wikipedia.org/w/index.php?title=Supercapacitor&oldid=675435298, (accessed 27 August 2015 07:46 UTC, DOI: 675435298).
7.吳成有 and 吳樸偉, 2010.
8.C. Ashtiani, R. Wright and G. Hunt, Journal of Power Sources, 2006, 154, 561-566.
9.J. Huang, B. G. Sumpter and V. Meunier, Chemistry–A European Journal, 2008, 14, 6614-6626.
10.V. Subramanian, H. Zhu and B. Wei, Electrochemistry Communications, 2006, 8, 827-832.
11.C. Brett, M. O. Brett, A. M. C. M. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications, 1993.
12.X. Liu, R. Wang, M. Liu, J. Luo, X. Jin, J. Sun and L. Gao, 2014.
13.S. Srinivasan, E. Ticianelli, C. Derouin and A. Redondo, Journal of Power Sources, 1988, 22, 359-375.
14.K. Novoselov, Nature, 2004, 438, 2005.
15.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano letters, 2008, 8, 902-907.
16.B. Z. Jang and A. Zhamu, Journal of Materials Science, 2008, 43, 5092-5101.
17.C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue and M. Morita, Electrochemical and solid-state letters, 2003, 6, A37-A39.
18.S.-L. Kuo and N.-L. Wu, Electrochemical and solid-state letters, 2007, 10, A171-A175.
19.R. Ma, J. Liang, B. Wei, B. Zhang, C. Xu and D. Wu, Journal of Power Sources, 1999, 84, 126-129.
20.J. Xu, K. Wang, S.-Z. Zu, B.-H. Han and Z. Wei, ACS nano, 2010, 4, 5019-5026.
21.W. S. Hummers Jr and R. E. Offeman, Journal of the American Chemical Society, 1958, 80, 1339-1339.
22.X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang and Y. Zheng, Journal of Materials Chemistry A, 2014, 2, 15273-15278.
23.L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang and J. J. Zhu, Advanced Functional Materials, 2012, 22, 2971-2979.
24.R. S. Diggikar, D. J. Late and B. B. Kale, RSC Advances, 2014, 4, 22551-22560.
25.X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, Acs Nano, 2012, 6, 6592-6599.
26.G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. Chen, C. W. Chen and M. Chhowalla, Advanced Materials, 2010, 22, 505-509.
27.L. Lin and S. Zhang, Chemical Communications, 2012, 48, 10177-10179.
28.S. Hu, J. Liu, J. Yang, Y. Wang and S. Cao, Journal of Nanoparticle Research, 2011, 13, 7247-7252.
29.P. Luo, C. Li and G. Shi, Physical Chemistry Chemical Physics, 2012, 14, 7360-7366.
30.T. Fan, W. Zeng, W. Tang, C. Yuan, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min and A. J. Epstein, Nanoscale research letters, 2015, 10, 1-8.
31.D. Pan, J. Zhang, Z. Li and M. Wu, Advanced materials, 2010, 22, 734-738.
32.Z. Gan, H. Xu and Y. Hao, Nanoscale, 2016, 8, 7794-7807.
33.L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.-J. Zhu, Nanoscale, 2013, 5, 4015-4039.
34.K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, Chemical Physics Letters, 2001, 347, 36-40.
35.Q. Xiao and X. Zhou, Electrochimica Acta, 2003, 48, 575-580.
36.K. Hiratsuka, Y. Sanada, T. Morimoto and K. Kurihara, Denki Kagaku, 1991, 59, 607-613.
37.M. Mastragostino, C. Arbizzani and F. Soavi, Journal of power sources, 2001, 97, 812-815.
38.M. Ue, K. Ida and S. Mori, Journal of the Electrochemical Society, 1994, 141, 2989-2996.
39.M. Morita, M. Goto and Y. Matsuda, Journal of applied electrochemistry, 1992, 22, 901-908.
40.A. Kulikov, Y. L. Kogan and L. Fokeeva, Synthetic Metals, 1995, 69, 223-224.
41.M.-C. Bernard, V. Bich and A. Hugot-Le Goff, Synthetic metals, 1999, 101, 809-810.
42.林筱莉, 國立臺灣大學高分子科學與工程學研究所學位論文, 2013, 1-235.
43.W.-S. Huang, B. D. Humphrey and A. G. MacDiarmid, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82, 2385-2400.
44.A. MacDiarmid, J. Chiang, A. Richter, Epstein and AJ, Synthetic Metals, 1987, 18, 285-290.
45.E. K. Lai, P. D. Beattie and S. Holdcroft, Synthetic metals, 1997, 84, 87-88.
46.K. Nishio, M. Fujimoto, N. Yoshinaga, O. Ando, H. Ono and T. Murayama, Journal of power sources, 1995, 56, 189-192.
47.H. D. Tran, J. M. D''Arcy, Y. Wang, P. J. Beltramo, V. A. Strong and R. B. Kaner, Journal of Materials Chemistry, 2011, 21, 3534-3550.
48.L. Zhang, M. Wan and Y. Wei, Macromolecular rapid communications, 2006, 27, 366-371.
49.M. Trchová, I. Šedenková, E. N. Konyushenko, J. Stejskal, P. Holler and G. Ciric-Marjanovic, The Journal of Physical Chemistry B, 2006, 110, 9461-9468.
50.H. D. Tran, Y. Wang, J. M. D’Arcy and R. B. Kaner, ACS nano, 2008, 2, 1841-1848.
51.J. Li, Q. Jia, J. Zhu and M. Zheng, Polymer International, 2008, 57, 337-341.
52.H. Y. Lee and J. Goodenough, Journal of Solid State Chemistry, 1999, 148, 81-84.
53.T. Brousse and D. Bélanger, Electrochemical and solid-state letters, 2003, 6, A244-A248.
54.I.-H. Kim and K.-B. Kim, Electrochemical and Solid-State Letters, 2001, 4, A62-A64.
55.X. Wang and X. Kong, Journal of Inorganic Materials (in Chinese), 2001, 16, 815-820.
56.O. Ghodbane, J.-L. Pascal and F. Favier, ACS applied materials & interfaces, 2009, 1, 1130-1139.
57.C.-C. Hu and W.-C. Chen, Electrochimica Acta, 2004, 49, 3469-3477.
58.J. Zheng, P. Cygan and T. Jow, Journal of the Electrochemical Society, 1995, 142, 2699-2703.
59.K. Wang, J. Huang and Z. Wei, The Journal of Physical Chemistry C, 2010, 114, 8062-8067.
60.C.-H. Lee, K.-Y. Liu, S.-H. Chang, K.-J. Lin, J.-J. Lin, K.-C. Ho and K.-F. Lin, Journal of colloid and interface science, 2011, 363, 635-639.
61.Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Advanced materials, 2010, 22, 3906-3924.
62.M. Trchová and J. Stejskal, Pure and Applied Chemistry, 2011, 83, 1803-1817.
63.A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
64.J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan and G. Gao, Nano letters, 2012, 12, 844-849.
65.S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li and W. Yu, Advanced Functional Materials, 2012, 22, 4732-4740.
66.X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 2008, 319, 1229-1232.
67.J. Shen, Y. Zhu, C. Chen, X. Yang and C. Li, Chemical Communications, 2011, 47, 2580-2582.
68.J. Zheng and T. Jow, Journal of The Electrochemical Society, 1995, 142, L6-L8.
69.C. C. Hu and Y. H. Huang, Journal of The Electrochemical Society, 1999, 146, 2465-2471.
70.K.-H. Chang and C.-C. Hu, Journal of the Electrochemical Society, 2004, 151, A958-A964.
71.X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang and Y. Chen, Advanced Functional Materials, 2013, 23, 3353-3360.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊