跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李怡儂
研究生(外文):Yi-Nung Lee
論文名稱:溪頭地區天然林與人工林中的金花蟲 (鞘翅目:金花蟲科) 物種多樣性:森林生態系中具潛力的指標生物
論文名稱(外文):Species diversity of leaf beetles (Coleoptera: Chrysomelidae) in the primary forest and plantations in Xitou: a potential bioindicator for forest ecosystems
指導教授:柯俊成柯俊成引用關係葉信廷
口試委員:楊平世李奇峰陸聲山
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:89
中文關鍵詞:指標生物金花蟲森林昆蟲生物多樣性
外文關鍵詞:leaf beetleChrysomelidaebioindicatorforest entomologybiodiversity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的是以調查金花蟲(鞘翅目,金花蟲科)在不同類型的林相中種類組成的多樣性,分析金花蟲種類組成與植群組成、環境因子之間的關聯性,探討以金花蟲做為不同林相代表指標生物的可行性。本試驗於溪頭自然教育園區選定 4 條人工林穿越線(紅檜林、柳杉林、孟宗竹林和闊葉林),及 1 條原生闊葉林穿越線,每條穿越線各 500 公尺,於 2014 年 11月至 2016 年 4 月,每個月採沿途掃網的方式採集樣本,而後將金花蟲挑出後鑑定至種,另外調查 5 條穿越線的地面植被組成、平均海拔高度、全天光空域 (Whole Light Sky Space, WLS),以及樹冠下可見天空比 (Diffuse Non-interceptance, DIFN) 等環境因子。本研究期間總共採集到 1,744 隻金花蟲個體,共計 45 屬 68 個種類,再利用修改後的指標生物分析 (Indicator species analysis),發現於天然闊葉林 (3 種)、人工紅檜林 (4 種)、人工孟宗竹林 (2 種) 以及人工闊葉林 (5種) 均有具顯著潛力的指標金花蟲物種;而 Shannon 多樣性指數以及 Pielou 均勻度指數則用於比較不同穿越線內的金花蟲種類組成,分析結果顯示人工柳杉林的多樣性指數最低,而人工及天然闊葉林的指數較高。使用重複分析 (Redundancy Analysis, RDA) 比較各林相的金花蟲多樣性與環境因子的相關性,結果顯示地面植被種類數、環境光照程度 (包括全天光空域和樹冠下可見天空比) 以及海拔高度均對金花蟲的群聚組成有顯著的影響。本研究提供溪頭地區不同森林型態中的金花蟲物種組成以及具潛力的指標物種,並分析及討論主要影響金花蟲在不同森林型態中物種多樣性的環境因子,期望本研究結果能做為森林生態系的環境監測、林業管理以及生態保育的參考。

The main purpose of this research is to obtain an understanding of species diversity of leaf beetles (Coleoptera: Chrysomelidae) in the different forest environment in Xitou Nature Education Area, and try to estimate the potential of using leaf beetles as bioindicators in forest ecosystems. Four 500 meters transects are set through the plantations (red cypress, Japanese cedar, Moso bamboo, and broad-leaved plantation) and one 500 meters transect are set through the natural broad-leaved forest, and insects are collected by sweeping alone each transect once a month from November 2014 to April 2016. Totally, 1,744 individuals of leaf beetles are collected which belong to 68 species and 45 genera. However, 3 species in natural broad-leaved forest, 4 species in red cypress plantation, 2 species in Moso bamboo plantation, and 5 species in broad-leaved plantation were considered potential bioindicators based on a modified Indicator species analysis. The Shannon‘s diversity index and Pielou’s evenness index are applied in comparing the amount of species and quantity of leaf beetles in the different transects. The result shows that species diversity of leaf beetles are lower in Japanese cadar plantation, but higher in broad-leaved plantation and natural forest. The environmental factors that are related to species diversity of leaf beetles in different forest systems are analyzed by the Redundancy Analysis (RDA). The result shows that the species quantity of understory plants, illumination (including Whole Light Sky Space and Diffuse Non-interceptance) and alttitude of transects have significantly influence on the chrysomelid species assemblages. We offer inventories and potential bioindicator species of leaf beetles of five transects in Xitou Nature Education Area, and discuss the environmental factors that affecting species diversity of leaf beetles in different forest systems.

目錄
中文摘要…………………………………………………………………………………i
Abstract …………………………………………………………………………………ii
目錄 ……………………………………………………………………………………iv
圖目錄………………………………………………………………………………… vii
表目錄…………………………………………………………………………………viii
Chapter 1 研究背景與往昔研究………………………………………………………1
1.1 臺灣森林概論………………………………………………………………… 1
1.2 指標生物 (Biological indicators) …………………………………………… 3
1.2.1 指標生物的發展與定義 ……………………………………………… 3
1.2.2 環境指標生物 (Environmental indicators) …………………………… 3
1.2.3 生態指標生物 (Ecological indicators)………………………………… 4
1.2.4 生物多樣性指標生物 (Biodiversity indicators) ……………………… 4
1.2.5 以昆蟲作為指標生物 ………………………………………………… 5
1.3 以金花蟲作為指標生物……………………………………………………… 6
1.3.1 金花蟲 (Chrysomelid) 簡介……………………………………………6
1.3.2 金花蟲生物多樣性之往昔研究 ……………………………………… 7
1.3.3 金花蟲作為指標生物之往昔研究 …………………………………… 7
1.4研究目的 ……………………………………………………………………… 8
Chapter 2 材料與方法………………………………………………………………… 9
2.1 研究樣區……………………………………………………………………… 9
2.2 採集方式 …………………………………………………………………… 10
2.3 金花蟲種類鑑定 …………………………………………………………… 10
2.4 金花蟲多樣性分析 ………………………………………………………… 10
2.5 修改後的指標生物分析 (IndVal’) ………………………………………… 11
2.6 植被種類及環境因子調查 ………………………………………………… 12
2.5.1 植被調查及海拔高度紀錄…………………………………………… 12
2.5.2 全天光空域 (Whole Light Sky Space, WLS) …………………………12
2.5.3 樹冠下可見天空比 (Diffuse Non-interceptance, DIFN) …………… 12
Chapter 3 研究結果 ………………………………………………………………… 13
3.1 金花蟲個體數及種類數組成 ……………………………………………… 13
3.1.1 各樣線金花蟲採集樣本組成………………………………………… 13
3.1.2 金花蟲總個體數……………………………………………………… 13
3.1.3 金花蟲總種類數……………………………………………………… 13
3.2 優勢金花蟲物種 …………………………………………………………… 14
3.2.1 整體數量優勢之金花蟲種類………………………………………… 14
3.2.2 各林相中具顯著數量優勢之金花蟲種類…………………………… 14
3.3 評估具顯著指標生物潛力之金花蟲種類 ………………………………… 15
3.3.1 金花蟲之全年度指標數值 (IndVal’) ……………………………… 15
3.3.2 定義與分析夏季指標數值 (SumIndVal’) 及冬季指標數值 (WinIndVal’) …………………………………………………………16
3.4 不同林相之金花蟲物種多樣性 …………………………………………… 17
3.5穿越線植被種類與其他環境因子量測結果………………………………… 17
3.5.1 植被種類及覆蓋面積量測結果……………………………………… 17
3.5.2 海拔高度量測結果…………………………………………………… 17
3.5.3 全天空光域量測結果………………………………………………… 18
3.5.4 樹冠下可見天空比量測結果………………………………………… 18
3.6 金花多樣性與環境因子之相關性 ………………………………………… 18
Chapter 4 討論 ……………………………………………………………………… 20
4.1 金花蟲群聚結構與森林植群組成探討 …………………………………… 20
4.2 金花蟲物種多樣性與環境之相關性探討 ………………………………… 22
4.3具顯著指標生物潛力的金花蟲種類………………………………………… 24
Chapter 5 結論與建議 ……………………………………………………………… 27
參考文獻……………………………………………………………………………… 29
圖……………………………………………………………………………………… 35
表……………………………………………………………………………………… 41


圖目錄
圖一、溪頭自然教育園區內5 條穿越線位置圖…………………………………… 35
圖二、2014 年 11 月至 2016 年 4 月各條穿越線金花蟲數量統計圖 ………… 36
圖三、2014 年 11 月至 2016 年 4 月各條穿越線金花蟲種類數統計圖 ……… 37
圖四、2014 年 11 月至 2016 年 4 月各條穿越線之主要金花蟲種類所佔比例
………………………………………………………………………………… 38
圖五、2014 年 11 月至 2016 年 4 月各條穿越線的金花蟲Shannon-Wiener 多樣性指數以及Pielou 均勻度指數……………………………………………… 39
圖六、2014 年 11 月至 2016 年 4 月各條穿越線的金花蟲數量對應環境因子的重複分析 (Redundancy analysis, RDA) 結果 ……………………………… 40


表目錄
表一、2014 年 11 月至 2016 年 4 月所採集之金花蟲名錄 …………………… 41
表二、2014 年 11 月至 2016 年 4 月天然闊葉林金花蟲採集紀錄 …………… 44
表三、2014 年 11 月至 2016 年 4 月人工紅檜林金花蟲採集紀錄 …………… 47
表四、2014 年 11 月至 2016 年 4 月人工柳杉林金花蟲採集紀錄 …………… 51
表五、2014 年 11 月至 2016 年 4 月人工孟宗竹林金花蟲採集紀錄 ………… 53
表六、2014 年 11 月至 2016 年 4 月人工闊葉林金花蟲採集紀錄 …………… 55
表七、金花蟲個體數與其他穿越線相比具顯著優勢之種類與其對應林相 ……… 60
表八、2015 年度之金花蟲全年度指標數值 (IndVal’) ……………………………61
表九、2015 年度之金花蟲夏季指標數值 (SumIndVal’)…………………………… 62
表十、2015 年度之金花蟲冬季指標數值 (WinIndVal’) …………………………… 63
表十一、天然闊葉林植被種類與覆蓋面積、覆蓋比例…………………………… 64
表十二、人工紅檜林植被種類與覆蓋面積、覆蓋比例…………………………… 67
表十三、人工柳杉林植被種類與覆蓋面積、覆蓋比例…………………………… 71
表十四、人工孟宗竹林植被種類與覆蓋面積、覆蓋比例………………………… 73
表十五、人工闊葉林植被種類與覆蓋面積、覆蓋比例…………………………… 76
表十六、五條樣線中各樣區所量測之海拔高度與平均…………………………… 80
表十七、五條樣線中各樣區所量測之全天光空域與平均………………………… 81
表十八、五條樣線中各樣區所量測之樹冠下可見天空比與平均………………… 82
表十九、重複分析 (Redundancy analysis, RDA) 中的特徵值 (Eigenvalue) 與約束排序軸所負荷的特徵值百分比 (Cumulative constrained percentage)
……………………………………………………………………………… 83
表二十、重複分析 (Redundancy analysis, RDA) 中個別環境因子的檢驗結果
……………………………………………………………………………… 83
表二十一、2014 年 11 月至 2016 年 4 月之間五條樣線中各種類金花蟲個體數
……………………………………………………………………………… 84
表二十二、2015年度五條樣線具顯著指標數值之金花蟲物種比較………………88

Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM,Brown VK, Butterfield J, Buse A, Coulson JC, Farrar F, Good JEG, Harrington J, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8: 1-16.
Beccaloni GW, Gaston KJ. 1995. Predicting the species richness of neotropical forest butterflies: Ithomiinae (Lepidoptera: Nymphalidae) as indicators. Biol Conserv 71: 77-86.
Caceres M, Legendre P, Wiser SK, Brotons L. 2012. Using species combinations in indicator value analyses. Methods Ecol Evol 3: 973-982.
Chaboo CS. 2007. Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles)(Coleoptera: Chrysomelidae). Bull Am Mus Nat Hist 305: 1-250.
Charles E, Basset Y. 2005. Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. J Trop Ecol 21: 329-336.
Cheng CH, Hung CY, Chen CP, Pei CW. 2013. Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Bot Stud 54: 60.
Chessman BC. 1995. Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family level identification and a biotic index. Austral Ecol 20: 122-129.
Dallinger R, Berger B, Birkel S. 1992. Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia 89: 32-41.
Dufrene M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67: 345-366.
ERWIN TL. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopts Bull 36:74-75.
FAO. 2010. Global Forest Resources Assessment 2010. FAO Forestry Paper 140 Rome.
Fischer FP, Schulz U, Schubert H, Knapp P, Schmoger M. 1997. Quantitative assessment of grassland quality: acoustic determination of population sizes of orthopteran indicator species. Ecol Appl 7: 909-920.
Flowers RW, Hanson PE. 2003. Leaf beetle (Coleoptera: Chrysomelidae) diversity in eight Costa Rican habitats. pp 25-51. In: Furth DG (ed.) Special Topics in Leaf Beetle Biology. Proceedings of the 5th International Symposium on the Chrysomelidae. Pensoft Publisher, Moscow.
Gaston KJ, Blackburn TM. 1995. Mapping biodiversity using surrogates for species richness: macro-scales and New World birds. Proc R Soc London Ser B 262: 335-341.
Gaston KJ, Williams PH. 1993. Mapping the world''s species-the higher taxon approach. Biodivers Lett 1: 2-8.
Hartley MJ. 2002. Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155: 81-95.
Hawkeswood TJ. 2003. Observations on the biology and host plants of the Australian flea beetle, Halticorcus platycerii Lea, 1917 (Coleoptera: Chrysomelidae: Alticinae). Calodema 1: 31-34.
Hsieh HI, Yuan HW, Wang LP, Ding TS. 2006. Species diversity of terrestrial vertebrates in primary forests and forest plantations in Sitou, central Taiwan. Q Jour Chin For 39: 421-436. (in Chinese)
Jolivet P, Verma KK. 2002. Biology of Leaf Beetles. Intercept Ltd, Hampshire. 332 pp.
Kimoto S, Takizawa H. 1997. Leaf Beetles (Chrysomelidae) of Taiwan. Tokai Univ Press. 511 pp.(in Japanese)
Lande R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5-13.
Lee CF, Bezděk J. 2016. Revision of the wingless Sikkimia duvivier (Coleoptera, Chrysomelidae, Galerucinae) from Taiwan, including a new generic synonymy and four new species descriptions. Zookeys 553: 79-106.
Lee CF, Cheng HT. 2007. The Chrysomelidae of Taiwan 1. Insect Observation at the Sishou Hills, Taiwan. 199 pp.(in Chinese)
Lee CF, Cheng HT. 2010. The Chrysomelidae of Taiwan 2. Insect Observation at the Sishou Hills, Taiwan. 191 pp.(in Chinese)
McGroch MA. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73: 181-201.
Meffe GK, Carroll CR. 1994. Principles of Conservation Biology. Sinauer, Sunderland. 779 pp.
Nair KS. 2007. Tropical Forest Fnsect Pests: Ecology, Impact, and Management. Cambridge University Press, U.K.. 404 pp.
Noss RF. 1990. Indicators for monitoring biodiversity : a hierarchical approach. Conserv Biol 4: 355-364.
Ohsawa M. 2004. Comparison of Elaterid biodiversity among larch plantations, secondary forests, and primary forests in the Central Mountainous Region in Japan. Ann Entomol Soc Am 97: 770-774.
Ohsawa M, Nagaike T. 2006. Influence of forest types and effects of forestry activities on species richness and composition of Chrysomelidae in the central mountainous region of Japan. Biodivers Conserv 15: 1179-1191.
Ohsawa M. 2010. Beetle families as indicators of Coleopteran diversity in forests: a study using Malaise traps in the central mountainous region of Japan. J Insect Conserv: 479-484.
Paoletti MG, Bressan M. 1996. Soil invertebrates as bioindicators of human disturbance. Crit Rev Plant Sci 15: 21-62.
Peck SL, Mcquaid B, Campbell, CL. 1998. Using ant species (Hymenoptera: Formicidae) as a biological indicator of agroecosystem condition. Environ Entomol 27: 1102-1110.
Pimenta M, De Marco Jr P. 2015. Leaf Beetle (Chrysomelidae: Coleoptera) assemblages in a mosaic of natural and altered areas in the Brazilian Cerrado. Neotrop Entomol 44: 242-255.
Prendergast JR. 1997. Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20: 210-216.
Rainio J, Niemela J. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12: 487-506.
Raupp MJ, Denno RF. 1983. Leaf age as a predictor of herbivore distribution and abundance. pp 91-124. In: Denno RF, McClure MS (eds) Variable Plants and Herbivores in Natural and Managed Systems, Academic Press, New York.
Riede K. 1998. Acoustic monitoring of Orthoptera and its potential for conservation. J Insect Conserv 2: 217-223.
Rosenberg DM, Resh V. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York. 488 pp.
Rykken JJ,Capen DE, Mahabir SP. 1997. Ground beetles as indicators of land type diversity in the Green Mountains of Vermont. Conserv Biol 11: 522-530.
Ścibior R, Stryjecki R, Pawlega K. 2014. Ecological structure of leaf-beetle assemblages (Coleoptera, Chrysomelidae) of the Bug Valley plant communities in the Wlodawa-Koden section. Teka Kom Ochr Kszt Środ Przyr 11: 211-228.
Ścibior R. 2010. The estimation of the preservation degree for wet biotopes of the Poleski National Park based on species richness of Chrysomelid (Coleoptera, Chrysomelidae) communities. Teka Kom Ochr Kszt Środ Przyr 7: 410-419.
Şen I, GOK A. 2014. Leaf beetle (Coleoptera: Chrysomelidae) communities of Kovada Lake and Kızıldag National Parks (Isparta, Turkey): assessing the effects of habitat types. Entomol Res 44: 176-190.
Shao K. 2016. Catalogue of life in Taiwan. Web electronic publication. version 2009. 2016 ed. http://taibnet.sinica.edu.tw.
Shieh SH, Yang PS. 2000. Community structure and functional organization of aquatic insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zool Stud 39: 191-202.
Sodhi NS, Liow LH, Bazzaz FA. 2004. Avian extinctions from tropical and subtropical forests. Annu Rev Ecol Systemat 35: 323-345.
Spellerberg IF. 1991. Monitoring Ecological Change. Cambridge University Press, U.K.. 412 pp.
Suthar S, Singh S, Dhawan S. 2008. Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: Is metal bioaccumulation affected by their ecological category?. Ecol Eng 32: 99-107
Tejeda-Cruz C, Sutherland WJ. 2004. Bird responses to shade coffee production. Anim Conserv 7: 169-179.
Wagner T. 1998. Influence of tree species and forest type on the Chrysomelid community in the canopy of an Uganda tropical forest. pp 253-269. In: Biondi M, Daccordi M, Furth DG (eds) Proceedings of the Fourth International Symposium on the Chrysomelidae. Museo Regionale di Scienze Naturali, Torino.
Wang PJ, Wang DH, Lin JC. 2013. The history review and management about Japanese cedar (Cryptomeria Japonica) plantations in Taiwan. Q Jour Chin For 46: 179-188. (in Chinese)
Wang TT. 1977. Tree biomass production in Cryptomeria stands of different age classes. J Agri Assoc China 102: 59-76.
Wilhm JL, Dorris TC. 1968. Biological parameters for water quality criteria. BioScience 18: 477-481.
Winner RW, Boesel MW, Farrell MP. 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can J Fish Aquat Sci 37: 647-655.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top