跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳則言
研究生(外文):Ze-Yan Chen
論文名稱:電路型量子電動力學中超導量子位元與光子的同調交互作用
論文名稱(外文):Coherent interaction between superconducting qubits and photons in circuit quantum electrodynamics
指導教授:管希聖陳啟東陳啟東引用關係
指導教授(外文):Hsi-Sheng GoanChii-Dong Chen
口試委員:蔡政達
口試委員(外文):Jeng-Da Chai
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:44
中文關鍵詞:約瑟芬接合電路型量子電動力學超導量子位元
外文關鍵詞:josephson junctioncircuit quantum electrodynamicssuperconducting quantum bit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究在晶片上兩個超導transmon量子位元與微波共振腔之間的交互作用。每一個transmon包含了可以被磁通量調控的約瑟芬接合以及用指叉式電容來降低transmon 的等效充電能 (charging energy),如此可以抑制由電荷擾動所造成的雜訊。本實驗的微波共振腔是半波長共平面波導,共振頻率為5.96GHz,選擇材料為鈮(Niobium)。沒有外加磁場,transmon 的躍遷頻率分別為10.1GHz 和9.3GHz。Transmon的躍遷頻率可以被磁場調控到和微波共振腔的共振頻率相同。在本實驗中,當transmon和微波共振腔之間零失調(zero detuning)時,觀察到反交叉(anti-crossing)現象,這證明了量子位元和共振腔之間有同調性的交互作用。利用Jaynse-Cummings model來擬合共振腔共振頻率附近的反交叉現象,發現量子位元與共振腔之間的耦合強度(coupling strength)分別為165MHz和160MHz。根據以上擬合,在兩量子位元之間零失調時,也有觀察到反交叉現象,這起因於兩量子位元的交互作用產生的糾纏現象。

Coherent interaction between two superconducting transmon qubits and an on-chip microwave cavity is studied. Each transmon consists a flux-tuned Josephson junction and a shunting multi-finger capacitor, which is for reducing the effective charging energy of the transmon so as to suppress the noise induced by the charge fluctuation. Our microwave cavity is a half-wavelength coplanar waveguide made of Nb with resonance frequency of 5.96GHz. With no flux bias, the transition frequencies of each transmon are 10.1GHz and 9.3GHz respectively. They can be tuned to meet the cavity resonance frequency by increasing the flux bias. In our experiment, anticrossing features appear around qubit-cavity zero detuning points, showing the coherent interaction between qubits and the cavity. By fitting the anticrossing features around the cavity resonance with the Jaynse-Cummings model, the qubit-cavity coupling strengths of the two transmons are estimated to be 165MHz and 160MHz, respectively. According to this information, we also located the qubit-qubit zero detuning points, where another anticrossing features are shown. They are corresponding to the entanglement of the two transmons due to the effective qubit-qubit interaction.


口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
圖目錄 VII

第一章 簡介 1
1-1 研究動機 1
1-2 約瑟芬效應 3
1-3 共振器(oscillator) 9
1-4 傳輸線(transmission line) 10
1-5 電路的量子化 13
1-6 電路型量子電動力學(circuit quantum electrodynamics) 17
1-7 真空拉比分裂(vacuum Rabi splitting) 19
1-8 量子非破壞性量測(quantum non-demolition measurement) 20
第二章 元件製程與量測 22
2-1 晶片結構與設計 22
2-2 製程機台介紹 23
2-3 光微影術製作共振腔 27
2-5 室溫的阻值量測 33
2-6 稀釋製冷機(dilution refrigerator) 34
第三章 實驗結果與討論 36
3-1 量子位元與共振腔的強耦合 36
3-2 量子位元的躍遷能量 37
3-3 兩個量子位元在共振腔之系統描述 38
3-4 兩個量子位元與共振腔的強耦合 39
3-5 兩個量子位元透過共振腔之間的間接耦合 40
第四章 結論 41
參考文獻 43



1.M. A. Nilsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.
2.D. P. DiVincenzo, The physical implementation of quantum computation. Fortschritte der Physik, 2000. 48:771.
3.M. Tinkham, Introduction to Superconductivity. Dover Publications Inc, 2004.
4.V. Ambegaokar and A. Baratof, Tunneling Between Superconductors. Phys. Rev. Lett. 11, 104, 1963.
5. Nathan K. Langford, Circuit QED — Lecture Notes
6.郭華丞 and 陳啟東, 微小超導結構中的量子計算進展. 物理雙月刊(廿五卷四期), 2003.
7.Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 398(6730):786–788, 1999.
8.Jonathan R. Friedman, et al., Quantum superposition of distinct macroscopic states. Nature 406, 43-46, 2000.
9.Caspar H. van der Wal, et al., Quantum Superposition of Macroscopic Persistent-Current States. Science 290, 773-776, 2000.
10.John M. Martinis, et al., Rabi Oscillations in a Large Josephson-Junction Qubit. Phys. Rev. Lett. 89, 117901, 2002.
11.D. M. Pozar, Microwave engineering. J. Wiley, 2012.
12.Steven M. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons. OXFORD UNIVERSITY PRESS, 2011.
13.M. H. Devoret and J. M. Martinis, Quantum entanglement and information processing. Elsevier,2003.
14.Jens Koch, et al., Charge-insensitive qubit design derived from the Cooper pair box. PHYSICAL REVIEW A 76, 042319, 2006.
15.Alexandre Blais, et al., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320, 2004.
16.A. Wallraff, et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162-167, 2004.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top