|
1.Pelvig, D.P., et al., Neocortical glial cell numbers in human brains. Neurobiology of Aging, 2008. 29(11): p. 1754-1762. 2.Sporns, O., G. Tononi, and R. Kotter, The Human Connectome: A Structural Description of the Human Brain. PLoS Comput Biol, 2005. 1(4): p. e42. 3.Schrodel, T., et al., Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Meth, 2013. 10(10): p. 1013-1020. 4.Briggman, K.L. and W.B. Kristan, Multifunctional Pattern-Generating Circuits. Annual Review of Neuroscience, 2008. 31(1): p. 271-294. 5.Niessing, J. and R.W. Friedrich, Olfactory pattern classification by discrete neuronal network states. Nature, 2010. 465(7294): p. 47-52. 6.Churchland, M.M., et al., Neural population dynamics during reaching. Nature, 2012. 487(7405): p. 51-56. 7.Megı́as, M., et al., Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 2001. 102(3): p. 527-540. 8.Ambros-Ingerson, J. and W.R. Holmes, Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus, 2005. 15(3): p. 302-315. 9.Scanziani, M. and M. Hausser, Electrophysiology in the age of light. Nature, 2009. 461(7266): p. 930-939. 10.Belliveau, J., et al., Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991. 254(5032): p. 716-719. 11.Hillman, E.M.C., Optical brain imaging in vivo: techniques and applications from animal to man. Journal of biomedical optics, 2007. 12(5): p. 051402-051402. 12.Raichle, M.E. and M.A. Mintun, BRAIN WORK AND BRAIN IMAGING. Annual Review of Neuroscience, 2006. 29(1): p. 449-476. 13.Wilt, B.A., et al., Advances in Light Microscopy for Neuroscience. Annual review of neuroscience, 2009. 32: p. 435. 14.Jin, L., et al., Single action potentials and subthreshold electrical events imaged in neurons with a novel fluorescent protein voltage probe. Neuron, 2012. 75(5): p. 779-785. 15.Hsu, K.-J., All-in-focus functional imaging system for drosophila brain activities study, in Department of Physics. 2014, National Taiwan University: Taiwan. p. 76. 16.Ahrens, M.B., et al., Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Meth, 2013. 10(5): p. 413-420. 17.Keller, P.J., et al., Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science, 2008. 322(5904): p. 1065-1069. 18.Kim, K.H., C. Buehler, and P.T.C. So, High-speed, two-photon scanning microscope. Applied Optics, 1999. 38(28): p. 6004-6009. 19.Lee, A.M.D., et al., In vivo video rate multiphoton microscopy imaging of human skin. Optics Letters, 2011. 36(15): p. 2865-2867. 20.Lechleiter, J.D., D.-T. Lin, and I. Sieneart, Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophysical Journal, 2002. 83(4): p. 2292-2299. 21.Callamaras, N. and I. Parker, Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium, 1999. 26(6): p. 271-279. 22.Stan, C.A., Liquid optics: Oscillating lenses focus fast. Nat Photon, 2008. 2(10): p. 595-596. 23.Hung-Chun Lin, M.-S.C., and Yi-Hsin Lin, A Review of Electrically Tunable Focusing Liquid Crystal Lenses. TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2011. 12(6): p. 9. 24.Mermillod-Blondin, A., E. McLeod, and C.B. Arnold, High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Optics Letters, 2008. 33(18): p. 2146-2148. 25.Bewersdorf, J., A. Egner, and S.W. Hell, Multifocal Multi-Photon Microscopy, in Handbook Of Biological Confocal Microscopy, B.J. Pawley, Editor. 2006, Springer US: Boston, MA. p. 550-560. 26.Sheppard, C.J.R., et al., Signal-to-Noise Ratio in Confocal Microscopes, in Handbook Of Biological Confocal Microscopy, B.J. Pawley, Editor. 2006, Springer US: Boston, MA. p. 442-452. 27.Sytsma, et al., Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. Journal of Microscopy, 1998. 191(1): p. 39-51. 28.Kodama, Y., Time Gating of Chloroplast Autofluorescence Allows Clearer Fluorescence Imaging. PLoS ONE, 2016. 11(3): p. e0152484. 29.Vicidomini, G., et al., STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects. PLoS ONE, 2013. 8(1): p. e54421. 30.Vicidomini, G., et al., Sharper low-power STED nanoscopy by time gating. Nat Meth, 2011. 8(7): p. 571-573. 31.Svoboda, K. and R. Yasuda, Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience. Neuron, 2006. 50(6): p. 823-839. 32.Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology. Nat Meth, 2010. 7(8): p. 603-614. 33.Mertz, J., Optical sectioning microscopy with planar or structured illumination. Nat Meth, 2011. 8(10): p. 811-819. 34.Webb, R.H., Theoretical basis of confocal microscopy, in Methods in Enzymology. 1999, Academic Press. p. 3-20. 35.Callamaras, N. and I. Parker, Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium, 1999. 26: p. 271-279. 36.Kerlin, A.M., et al., Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex. Neuron, 2010. 67(5): p. 858-871. 37.Oku, H., K. Hashimoto, and M. Ishikawa, Variable-focus lens with 1-kHz bandwidth. Optics Express, 2004. 12(10): p. 2138-2149. 38.Gobel, W., B.M. Kampa, and F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Meth, 2007. 4(1): p. 73-79. 39.Oku, H., K. Hashimoto, and M. Ishikawa, Variable-focus lens with 1-kHz bandwidth. Opt. Express, 2004. 12: p. 2138-2149. 40.Fahrbach, F.O., et al., Rapid 3D light-sheet microscopy with a tunable lens. Optics Express, 2013. 21(18): p. 21010-21026. 41.Grewe, B.F., et al., Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomedical Optics Express, 2011. 2(7): p. 2035-2046. 42.Jabbour, J.M., et al., Optical axial scanning in confocal microscopy using an electrically tunable lens. Biomedical Optics Express, 2014. 5(2): p. 645-652. 43.Olivier, N., et al., Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Optics Letters, 2009. 34(11): p. 1684-1686. 44.Kong, L., et al., Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat Meth, 2015. 12(8): p. 759-762. 45.Hoover, E.E. and J.A. Squier, Advances in multiphoton microscopy technology. Nat Photon, 2013. 7(2): p. 93-101. 46.Pantazis, P. and W. Supatto, Advances in whole-embryo imaging: a quantitative transition is underway. Nat Rev Mol Cell Biol, 2014. 15(5): p. 327-339. 47.Bouchard, M.B., et al., Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat Photon, 2015. 9(2): p. 113-119. 48.Bewersdorf, J., R. Pick, and S.W. Hell, Multifocal multiphoton microscopy. Optics Letters, 1998. 23(9): p. 655-657. 49.Watson, B.O., V. Nikolenko, and R. Yuste, Two-Photon Imaging with Diffractive Optical Elements. Frontiers in Neural Circuits, 2009. 3: p. 6. 50.Watson, B.O., et al., Two-photon microscopy with diffractive optical elements and spatial light modulators. Frontiers in Neuroscience, 2010. 4. 51.Bahlmann, K., et al., Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Optics Express, 2007. 15(17): p. 10991-10998. 52.Duemani Reddy, G., et al., Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci, 2008. 11(6): p. 713-720. 53.Salome, R., Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Methods, 2006. 154: p. 161-174. 54.Grewe, B.F., et al., High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Meth, 2010. 7(5): p. 399-405. 55.Dal Maschio, M., et al., Three-dimensional in vivo scanning microscopy with inertia-free focus control. Optics Letters, 2011. 36(17): p. 3503-3505. 56.Jiang, J., et al., Fast 3-D temporal focusing microscopy using an electrically tunable lens. Optics Express, 2015. 23(19): p. 24362-24368. 57.Kim, K.H., et al., Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Optics Express, 2007. 15(18): p. 11658-11678. 58.Duocastella, M., B. Sun, and C.B. Arnold, Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. Journal of Biomedical Optics, 2012. 17(5): p. 050505-050505. 59.Nielsen, T., et al., High efficiency beam splitter for multifocal multiphoton microscopy. Journal of Microscopy, 2001. 201(3): p. 368-376. 60.Qu, J., et al., RECENT PROGRESS IN MULTIFOCAL MULTIPHOTON MICROSCOPY. Journal of innovative optical health sciences, 2012. 5(3): p. 10.1142/S1793545812500186. 61.Nikolenko, V., et al., SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators. Frontiers in Neural Circuits, 2008. 2: p. 5. 62.Jureller, J.E., H.Y. Kim, and N.F. Scherer, Stochastic scanning multiphoton multifocal microscopy. Optics Express, 2006. 14(8): p. 3406-3414. 63.Wegner, F.V., et al., Fast XYT Imaging of Elementary Calcium Release Events in Muscle With Multifocal Multiphoton Microscopy and Wavelet Denoising and Detection. IEEE Transactions on Medical Imaging, 2007. 26(7): p. 925-934. 64.Kobayashi, M., et al., Second-harmonic-generation microscope with a microlens array scanner. Optics Letters, 2002. 27(15): p. 1324-1326. 65.Shimozawa, T., et al., Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. Proceedings of the National Academy of Sciences, 2013. 110(9): p. 3399-3404. 66.Schulz, O., et al., Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences, 2013. 110(52): p. 21000-21005. 67.Cha, J.W., et al., Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube. AIP Advances, 2015. 5(8): p. 084802. 68.Le Grand, Y., et al., Non-descanned versus descanned epifluorescence collection in two-photon microscopy: Experiments and Monte Carlo simulations. Optics Communications, 2008. 281(21): p. 5480-5486. 69.Graf, R., J. Rietdorf, and T. Zimmermann, Live Cell Spinning Disk Microscopy, in Microscopy Techniques: -/-, J. Rietdorf, Editor. 2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 57-75. 70.Takahara, Y., N. Matsuki, and Y. Ikegaya, NIPKOW CONFOCAL IMAGING FROM DEEP BRAIN TISSUES. Journal of Integrative Neuroscience, 2011. 10(01): p. 121-129. 71.Spindler, S.R. and V. Hartenstein, The Drosophila neural lineages: a model system to study brain development and circuitry. Development Genes and Evolution, 2010. 220(1-2): p. 1-10. 72.Jennings, B.H., Drosophila – a versatile model in biology & medicine. Materials Today, 2011. 14(5): p. 190-195. 73.Cha, J.W., et al., Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy. Scientific Reports, 2014. 4: p. 5153. 74.Buehler, C., et al., Single-Photon Counting Multicolor Multiphoton Fluorescence Microscope. Journal of Fluorescence, 2005. 15(1): p. 41-51. 75.Computing, M., Data Acquisition Handbook. 3 ed. A Reference For DAQ And Analog & Digital Signal Conditioning. 2004: Measurement Computing. 76.Kumar, S., et al., Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging. Optics Express, 2007. 15(20): p. 12548-12561. 77.Photonics, H., Photon Counting, in PHOTOMULTIPLIER TUBES Basics and Applications. 2007. 78.Vinegoni, C., et al., Real-time high dynamic range laser scanning microscopy. Nat Commun, 2016. 7. 79.Driscoll, J.D., et al., Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. Journal of Neurophysiology, 2011. 105(6): p. 3106-3113. 80.Becker, W., et al. High-speed FLIM data acquisition by time-correlated single-photon counting. 2004. 81.Carriles, R., et al., Simultaneous multifocal, multiphoton, photon counting microscopy. Optics Express, 2008. 16(14): p. 10364-10371. 82.Benninger, R.K.P., et al., Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy. Optics Letters, 2008. 33(24): p. 2895-2897. 83.Qingguo, X., et al., A New Approach for Pulse Processing in Positron Emission Tomography. IEEE Transactions on Nuclear Science, 2005. 52(4): p. 988-995. 84.Striker, G., et al., Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein. The Journal of Physical Chemistry B, 1999. 103(40): p. 8612-8617. 85.Elson, D.S., et al., Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier. New Journal of Physics, 2004. 6(1): p. 180. 86.Gu, L., et al., In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun, 2013. 4. 87.Negrean, A. and H.D. Mansvelder, Optimal lens design and use in laser-scanning microscopy. Biomedical Optics Express, 2014. 5(5): p. 1588-1609. 88.Stelzer, E.H.K., The Intermediate Optical System of Laser-Scanning Confocal Microscopes, in Handbook Of Biological Confocal Microscopy, B.J. Pawley, Editor. 2006, Springer US: Boston, MA. p. 207-220. 89.Photonics, H., Photomultiplier Tubes Basics and Applications. 3a ed. 2007. 90.PHOTONICS, H., HOW TO USE PHOTOMULTIPLIER TUBES AND PERIPHERAL CIRCUITS, in PMT handbook. 2007. 91.Shukla, A. and U. Kumar, Positron emission tomography: An overview. Journal of Medical Physics, 2006. 31(1): p. 13-21. 92.Xie, Q., et al., Potentials of Digitally Sampling Scintillation Pulses in Timing Determination in PET. IEEE transactions on nuclear science, 2009. 56(5): p. 2607-2613. 93.Xi, D., et al. A PET detector module using FPGA-only MVT digitizers. in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). 2013. 94.Xi, D., et al., FPGA-Only MVT Digitizer for TOF PET. IEEE Transactions on Nuclear Science, 2013. 60(5): p. 3253-3261. 95.JOUR, T.-., et al., Real time two-photon absorption microscopy using multi point excitation. Journal of Microscopy Journal of Microscopy, 1998. 192. 96.Egner, A. and S.W. Hell, Time multiplexing and parallelization in multifocal multiphoton microscopy. Journal of the Optical Society of America A, 2000. 17(7): p. 1192-1201. 97.Egner, A., V. Andresen, and S.W. Hell, Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment. Journal of Microscopy, 2002. 206(1): p. 24-32. 98.Kester, W., Op Amp Applications Handbook. 2005, Burlington: Newnes. 97-118. 99.Leach, W.M., On the calculation of noise in multistage amplifiers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995. 42(3): p. 176-178. 100.Philbert, S.T. and K. David, In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation Principles and Hardware Realization, in In Vivo Optical Imaging of Brain Function, Second Edition. 2009, CRC Press. p. 59-115. 101.Drobizhev, M., et al., Two-photon absorption properties of fluorescent proteins. Nat Meth, 2011. 8(5): p. 393-399. 102.Suhling, K., et al., Imaging the Environment of Green Fluorescent Protein. Biophysical Journal, 2002. 83(6): p. 3589-3595.
|