跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏睿緹
研究生(外文):Ruei-Ti Wei
論文名稱:全海洋生物材料隨機雷射光電特性研究
論文名稱(外文):Investigation of optoelectronic properties of all marine materials based random laser
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:林泰源許芳琪
口試委員(外文):Tai-Yuan LinFang-Chi Hsu
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:48
中文關鍵詞:隨機雷射葉綠素海生植物珊瑚奈米結構
外文關鍵詞:Random laserChlorophyllAquatic plantCoralsNano structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在近十年的光學領域研究當中,隨機雷射相較於傳統雷射有著許多先天性的優勢,舉凡可撓性、微小的體積、簡單的結構設計、低成本以及量產的可能性等,都顯示其在未來具有相當的應用價值.
我們利用了一系列取材自之海洋生物的對環境相當友善之材料來源,力求為我們的環境保護盡一份心力,先研究以萃取自海生來源植物之葉綠素之發光特性,再透過物理來分析其有趣的光電特性,並以此作為發光材料,藉由取材自海洋中的珊瑚骨骼的微米級至奈米級之孔洞結構所形成之共振腔來產生同調性回饋,形成隨機雷射。


In the study of optical field among nearly a decade, random laser has many inherent advantages compared to traditional laser, such as flexibility, small size, simple structure, low cost and the possibility of mass production and other fantastic features which has considerable value in the near future.
We use a series of materials derived from the marine environment, which is environmentally friendly, striving to make a contribution to environmental protection. First we study the optical properties of the chlorophyll which extracted from the aquatic plant, then using the physics to analysis its interesting optical and electrical properties, using this kind of material as photoluminescence material, then make a combination with coral skeletons, which structure from micron to nanoscale, to be a resonant cavities to produce the coherent feedback to generate random laser.


誌謝………………………………….……………….…….……..i
中文摘要……….………………………..............……….....…..iii
Abstract…………………………….…………………….……..iv
Contents………………………………………..….….…….……v
List of figures……………………………………………….…viii
Chapter 1 Introduction…………………………………1
Reference 5
Chapter 2 Theoretical Background 7
2.1 Photoluminescence (PL) 7
2.2 Random Laser (RL) 8
2.2.1 Mechanisms 10
2.2.2 Unique Characteristics 11
2.2.3 Applications 12
2.3 Photonic Amorphous Structure (PAS) 18
2.4 Fabry-Perot Resonator 19
Reference 21
Chapter 3 Experimental Details 23
3.1 Scanning Electron Microscopy (SEM) 23
3.2 Random Laser Measurement 25
Reference 26
Chapter 4 Investigation of optoelectronic properties
of all marine materials based random laser. 27
4.1 Introduction 27
4.2 Experiment sections 29
4.2.1 Materials 29
4.2.2 Sample fabrications 30
4.3 Results and discussion 32
Reference 45
CH5 Conclusion 48



CH1
1.D. S. Wiersma, Nat. Photonic. 7, 188 (2013).
2.H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999).
3.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
4.Y.Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S. H. Wei, and T. Wu, Npg. Asia. Mater. 4, e30 (2012).
5.H. Noh, J. K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
6.M. Leonetti, C. Conti, and C. Lopez, Nat. Photonic. 5, 615 (2011).
7.J. Huang, S. Chu, J. Kong, L. Zhang, C. M. Schwarz, G. Wang, L. Chernyak, Z. Chen, and J. Liu, Adv. Opt. Mater. 1, 179 (2013).
8.D.S. Wiersma and S. Cavalieri, Nature 414, 708 (2001).
9.R. M.Balachandran, D. P. Pacheco, and N. M. Lawandy, Appl. Opt. 35, 640 (1996).
10.R. C. Poison and Z. V. Vardney, Appl. Phys. Lett. 85, 1289 (2004).
11. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and Kishino, Appl. Phys. Lett. 97, 151109 (2010).
12. B. Cao, Y. Jian, C. Wang, W. Wang, L。Wang, M. Niu, W. Zhang, Y. Li, and S. T. Lee, Adv. Funct. Mater. 17, 1501 (2007).
13. H. Zhu, C. X. Shan, B. Yao, B. H, Li, J. Y. Zhang, Z.Z. Zhang, D. X. Zhao, D. Z. Shen, X.W.Fan, Y. M. Lu, and Z. K. Tang, Adv. Master. 21, 1613 (2009).
14. H. Zhu, C.X. Shan, J.Y. Zhang, Z.Z. Zhang, B.H. Li, D. X. Zhao, B. Yao, D.Z. Shen, X.W. Fan, Z.K. Tang, X. Hou, and K.L. Choy, Adv. Master. 22, 1877 (2010).
15. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nat. Nanotechnol. 6, 506 (2011).
16. Sun Y, Shopova S.I, Wu C.S, Arnold S, Fan X. Proc. Natl. Acad. Sci. USA, 107:. 16039-16042. (2010)
17. Zhang X, W Lee, Fan X. Lab Chip 12: p. 3673-3675. (2012)
18. Li Z, et al. Opt. Express, 14(22): p. 10494-10499 (2006)
19. He L, et al. Nat. Nanotechnol., 6: 428-432. (2011)
20. Lee W, Fan X. Anal. Chem. 2012. 84: p. 9558 - 9563. (2012)
21. Zhang X, Lee, W., Fan, X. Lab Chip, 12(19) 3673-3675. (2012).
22. Gather, Malte C., and Seok Hyun Yun. Nat. Photon. 5.7: 406-410. (2011)
23. Wu X, et al. Nature Commun.5: p. 3779. (2014)
24. Azzi W.A.a.J.R. Proc. Natl. Acad. Sci., 61. (1968)
25. Jarvis P, López-Juez E. Nat. Rev. Mol. Cell Biol. 14: p. 787-802. (2013)
26. Chen Y.C., Chen Q. Lab Chip, 16, 2228 (2016)
27. P. Vukusic, and J. R. Sambles, Nature 424, 852 (2003).
28. M. Srinvasaro, Chem. Rev. 99, 1935 (1999).
29. J. Huang, X. Wang, and Z. L. Wang, Nano. Lett. 6, 2325 (2006).
30. Z. Zhang, K. Yu, L. Lou, H. Yin, B. Li, and Z. Zhu, Nanoscale 4, 2606 (2012).
31. Pauline Spolaore, Claire Joannis-Cassan,Elie Duran. Vol. 101, No. 2, 87–96. (2006)

CH2
1.Y. T. Chen, Doctoral Dissertation, Department of Physics, National Taiwan University (2011).
2.S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy,_published by Academic Press (1993).
3.J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall^Inc.
(1971).
4.D. S. Weirs-ma, Nat. Photonic. 4, 359 (2008).
5.S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
6.F. Koenderink, A. Lagendijk, and W. L. Vos, Phys. Rev. B 72,153102
(2005).
7.V. S. Letokhov, Zh. Eksp. Teor. Fiz. 53, 1442 (1967); Sov. Phys. JETP 26, 835 (1968).
8.V. Lekovhov, J.Exp. Yheor. Phys. 26,835 (1868).
9.A. Yamilov. X. Wu, H. Cao, A. Burin, Opt. Lett. 30.2430 (2005).
10.S. Mujumdar. M. Ricci. R. Torre. D.S. Wiersma. .Rev Let 93,053903 (2004).
11.H. Cao, Y. Zhao, H. Ong, S. ho, J. Y. Dai, J.Y. Wu, R.Chang, Appl.
Phys. Lett 73, 3656 (1998).
12.H. Cao, Y. Zhao, S. Ho. E. Seelig, Q. Wang, R.Chang. Phys. Rev.
Lett. 82.2278 (1999).
13.E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan. Phys.
Rev. Lett. 42,673 (1979).
14.D.S.Werisma, Nat. Phys. 4, 359 (2008).
15.B. S. Bhaktha, N.Bachelard, X. Noblin, P. Sebbah, Appl. Phys. Lett.
101,151101 (2012).
16.F, Luan, B. Gu, A.S. Gomes, K.T.Yong, S. Wen. P.N. Prased. Nano Today 10,168 (2015).
17.R. C. Polson, Z.V. Vardeny, Appl. Phys. Lett. 85,1289 (2004).
18.B. Redding, M. A. Choma, H. Cao, Nature Photon. 6, 355 (2015).
19.B. Redding. S. F. Liew,R. Sarma, H. Cao. Nature Photon.7, 746(2013).
20.H. Noh. J.K. Yang. S. F. Liew, M.J. Rooks,G.S.Solomon, and H. Cao, Phys, Rev, Lett.106, 183901(2011).
21.C.Jin,X. Meng, B. Cheng, Z.Li, and D. Zhang, Phys.Rev. B63, 195107 (2001).
22.L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sdenz, P. Schurtenberger, and F Scheffold, Phys. Rev.Lett.93, 073903 (2004)
23.R. O. Pmm, in Bird Coloration (Harvard University Press, Cambridge, Massachusetts, 2S6) vol. 1, pp. 295-353.

CH3
1. Schroder, D. K., Semiconductor Material and Device Characterization,
Wiley (1998).

CH4

1.M. H. Huang, S .Mao, H. Feick, H. Yan, Y Wu, H, Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nano lasers,” Science 292, 1897 (2001)
2.Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” PNAS 107, 16039 (2010).
3.S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnol. 6, 506 (2011).
4.S。Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers, Adv. Mater. 25, 5988 (2013).
5.H. Noh, J. K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, “Control of lasing in biomimetic structures with short-range order,” Phys. Rev. Lett. 106, 183901 (2011).
6.B. Cao, Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501 (2007).
7.H. H. Fang, R. Ding, S. Y. Lu, X. L. Zhang, J. Feng, Q. D. Chen, and H. B. Sun, “Flexible lasers based on the microstructured single-crystalline ultrathin films,” J.
Mater. Chem. 22, 24139 (2012).
8.J.C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106 (2002).
9.D. Saxena, ST Mekkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers, Nat. Photonic. 7, 963 (2013).
10. J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,Adv. Mater. 25,833 (2013).
11. R. C. Poison, and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectrum,” J. Opt. 12, 024010 (2010).
12. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425 (2010).
13. D. Zhang, G. Kostovski, C. Kamutsch, and A. Mitchell, “Random lasing form dyedoped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructurs,” Qrg. Electron. 13, 2342 (2012).
14. M. C. Gather, and S. H. Yun, “Single-cell biological lasers,” Nat. Photonic. 5, 406 (2011).
15. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers, Nat. Photonic. 5, 615 (2011).
16. C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and R Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals, Nat. Commun. 4, 2376 (2013).
17. H. Xu, J. B. Wright, A. Hurtado, Q. Li, T. S. Luk, J. J. Figiel, K. Cross, G. Balakrishnan, L. F. Lester, I. Brener, and G. T. Wang, “Gold substrate-induced single-mode lasing of GaN nano wires,” Appl. Phys. Lett. 101, 221114 (2012).
18. P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852 (2003).
19. D. S. Wiersma, “Disordered photonics” Nat. Photonic. 7, 188 (2013).
20. M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and Moths,” Chem. Rev. 99, 1935 (1999).
21. J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano. Lett. 6, 2325 (2006).
22. Z. Zhang, K. Yu, L. Lou, H. Yin, B. Li, and Z. Zhu, “Morphology-controlled synthesis of ZnO replicas with photonic structures from butterfly (Papilio paris) wing scales for tunable optical properties,” Nanoscale 4, 2606 (2012).






QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top