跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古幸宜
研究生(外文):Sing-Yi Gu
論文名稱:探討肺臟幹源細胞惡性轉型為腫瘤誘發細胞之機轉與生物標誌之表現
論文名稱(外文):The study for the mechanism and biomarkers expression of pulmonary stem/progenitor cells becoming tumor initiating cells under malignant transformation
指導教授:彭福佐林泰元林泰元引用關係
指導教授(外文):Fu-Chuo PengThai-Yen Ling
口試委員:黃彥華陳惠文何肇基曾宇鳳黃佩欣
口試日期:2016-04-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:肺臟幹源細胞腫瘤誘發細胞Oct-4血管新生angiopoietins/Tie2
外文關鍵詞:pulmonary stem/progenitor cellscancer initiating cellsOct-4angiogenesisangiopoietins/Tie2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌在世界上是最常發生的惡性腫瘤,平均五年存活率低於14%,在台灣,每年有八千餘人死於肺癌,為惡性腫瘤造成死亡原因的首位。臨床上,肺癌因為早期診斷困難,化學藥物治療容易出現抗藥性,造成癌症復發和轉移的現象。肺臟細胞型態多元,而誘發肺癌發生的危險因子眾多,包括吸菸、氡氣暴露、石棉接觸等等,其中肺臟幹源細胞(stem/progenitor cells, PSCs)被認為是肺臟發生癌化的起源,我們認為肺臟幹源細胞是探討肺臟癌化過程重要的研究平台。腫瘤誘發細胞(cancer initiating cells, CICs)又稱作癌症幹細胞,負責腫瘤組織的生長並於化學治療時展現抗藥性,與癌症的惡性行為具有高度相關,因此針對腫瘤誘發細胞發展標靶策略是重要的治療方針,標的腫瘤誘發細胞以表面抗原辨識為主,例如肺癌的腫瘤誘發細胞利用CD133、CD117或ALDH活性進行辨識分離,目前腫瘤誘發細胞的研究平台是癌症細胞株和臨床腫瘤組織,然而腫瘤誘發細胞在這些細胞或組織中比例低不易分離,且分離後其細胞特性難以維持,因此對於腫瘤誘發細胞的研究仍有許多爭議。過去研究指出,Oct-4異常表現與腫瘤誘發細胞的行為特性有關,臨床上,Oct-4高度表現的肺癌病患常對傳統化學治療出現抗藥性,且病患平均存活時間較短。目前實驗室以coxsackievirus/adenovirus receptor (CAR)作為陽性標記成功分離出小鼠肺臟幹源細胞(CAR+ mouse pulmonary stem/progenitor cells, CAR+/mPSCs),本研究利用逆轉病毒轉植,使Oct-4高度表達於CAR+/mPSCs,發現其誘導形成細胞群落,並建立出CAR+/mPSCsOct-4_hi細胞株,包括C1,E9,和C7; CAR+/mPSCsOct-4_hi細胞週期分析發現,S期和G2/M期的細胞分佈比例明顯上升,並且CAR+/mPSCsOct-4_hi細胞展現繼代培養能力及端粒酶(telomerase)活性; 進一步利用體內異種移植腫瘤試驗(in vivo xenograft tumor assay)證明,Oct-4高度表達誘導CAR+/mPSCs走向癌化,並展現高度肺癌腫瘤誘發細胞的行為,包括腫瘤再生和轉移的能力; 分析肺癌腫瘤誘發細胞特性,發現CAR+/mPSCsOct-4_hi細胞具CD133表現和ALDH活性,並且展現化療藥物(Cisplatin和Palitaxel)處理的耐受性; 利用次世代定序技術分析基因表現,發現血管新生調控機制在CAR+/mPSCsOct-4_hi細胞中高度活化,其中CAR+/mPSCsOct-4_hi細胞展現豐富的促血管新生因子表達並誘導內皮細胞(SVEC4-10)建立管狀結構(tube formation),同時在雞胚尿囊膜試驗(chorioallantonicmembrane inoculation,CAM assay)中也發現CAR+/mPSCsOct-4_hi細胞促進血管形成,而在CAR+/mPSCsOct-4_hi腫瘤組織中,利用組織免疫染色,發現內皮細胞(CD31+)所佔比例較高; 利用共軛焦顯微鏡觀察CAR+/mPSCsOct-4_hi細胞與內皮細胞的交互作用,發現CAR+/mPSCsOct-4_hi細胞會吸引內皮細胞匯集並建立出血管脈絡,以綠色螢光蛋白(GFP)標記CAR+/mPSCsOct-4_hi C1細胞株,利用體內異種移植腫瘤試驗形成的腫瘤組織,發現內皮細胞(CD31+)中有18%為GFP陽性表現; 進一步分析蛋白質表現,CAR+/mPSCsOct-4_hi細胞中Angiopoietins/Tie2訊息高度活化,而Tie2抑制劑處理有效降低CAR+/mPSCsOct-4_hi細胞誘導血管形成的行為,並抑制CAR+/mPSCsOct-4_hi細胞形成腫瘤。綜合以上結論,異常Oct-4高度表現誘導小鼠肺臟幹細胞走向癌化,並伴隨高度癌症誘發細胞特徵表現,此外,Oct-4高度表達的CAR+/mPSCsOct-4_hi細胞具有誘發血管新生的能力,並且會直接參與血管形成,其中機制可能與Angiopoietins/Tie2訊息活化有關。腫瘤誘發細胞的標靶策略是治療癌症的重要方針,本研究提供一個新的腫瘤誘發細胞平台,將有助於肺癌治療策略的發展,此外,本研究發現腫瘤誘發細胞可能經由不同於內皮細胞的訊息傳遞,直接參與腫瘤血管新生行為,期待這項研究成果有助於未來肺癌疾病的診斷與治療。

Lung cancer is the leading cause of cancer-related mortality worldwide. The overall 5-year survival rate is less than 14% and most cases are diagnosed in the late stages of the disease, which tend to exhibit chemotherapy resistance, tumor recurrence, and metastasis, resulting in poor prognoses. A number of factors may increase the risk of lung cancer, such as smoking, radon exposure, and asbestos inhalation. The lung is a highly complex organ comprised of a diversity of cell types. Recent studies suggest that stem/progenitor cells are susceptible to tumorigenic force. Thus, lung stem/progenitor cells are an important model for exploring the tumorigenesis process. Cancer initiating cells (CICs), also called cancer stem cells (CSCs), are responsible for chemotherapy resistance, tumor recurrence, and metastasis. Currently, the identification of CICs is highly dependent on surface markers. For example, lung cancer CICs are identified by CD133, CD117, or ALDH activity. However, through surface marker identification, studies have yielded conflicting results on CICs in different types of cancer. Clues to more effective treatments targeting tumorigenic cells could be developed with an accelerated understanding of tumor biology aided by characterization of CICs. Oct-4 is one of the most important transcription factors for the pluripotency of stem cells. Meanwhile, an increasing number of studies have demonstrated that aberrant expression of Oct-4 can contribute to CICs-like behavior in various somatic cancers. In previous studies, we have reported on the enrichment of mouse pulmonary stem/progenitor cells (mPSCs) by serum-free primary selection culture followed by FACS isolation using the coxsackievirus/adenovirus receptor (CAR) as the positive selection marker. In the current study, we demonstrated that overexpression of the pluripotent transcription factor Oct-4 is sufficient to induce CAR+/mPSCs transformation, the result of which we name CAR+/mPSCsOct-4_hi (C1, E9, and C7 clones). CAR+/mPSCsOct-4_hi clones exhibit a progressive cell cycle, proliferation potential, and telomerase activity. With a xenograft tumor formation assay, CAR+/mPSCsOct-4_hi clones showed cancer initiating and metastasis capacity. In further validating their CICs-like abilities, CAR+/mPSCsOct-4_hi clones express CD133, ALDH activity, as well as chemoresistance potential. Next generation sequencing (NGS) analysis of CAR+/mPSCsOct-4_hi clones revealed that angiogenesis-associated mechanisms were highly activated. CAR+/mPSCsOct-4_hi clones show remarkable expression of certain proangiogenic factors, including angiopoietins (ANGs) and VEGF, and enhanced angiogenic potential. Moreover, CAR+/mPSCsOct-4_hi actively participated in tumor blood vessel formation and triggered a novel angiogenic mechanism, the angiopoietins/Tie2 signaling pathway. The present study indicates that by overexpressing Oct-4 at high levels in a subset of pulmonary stem/progenitor cells, CAR+/mPSCs, can transform the cells such that they exhibit tumorigenic potential and CICs-like properties. The transformed cells not only showed enhanced angiogenic potential, but also actively participated in tumor blood vessel formation and activated the ANGs/Tie2 signaling pathway. This study provides critical evidence supporting a possible origin of CICs and helps elucidate the pathways responsible for CICs-mediated blood vessel formation.

目錄
口試委員會審定書------------------------------------------I
謝誌---------------------------------------------------II
中文摘要------------------------------------------------IV
ABSTRACT-----------------------------------------------VI

1. INTRODUCTION-----------------------------------------1
2. MATERIALS AND METHODS--------------------------------9
3. RESULTS---------------------------------------------21
4. DISCUSSION------------------------------------------29
5. CONCLUSION------------------------------------------38
6. FURTHER WORK----------------------------------------39
7. REFERENCES------------------------------------------45
8. FIGURES---------------------------------------------52
9. TABLES----------------------------------------------82
10. PUBLICATIONS---------------------------------------87


1.Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015; 65(2):87-108.
2.Hsiao AJ, Chen LH and Lu TH. Ten leading causes of death in Taiwan: A comparison of two grouping lists. J Formos Med Assoc. 2015; 114(8):679-680.
3.(2012). Causes of Death in Taiwan. In: Department of Statistics MoHaW, Executive Yuan, Taipei, Taiwan, ed.
4.衛生福利部. (2015). 衛生福利統計動向.
5.Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17(3):313-319.
6.Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer. 2013; 13(10):714-726.
7.Dela Cruz CS, Tanoue LT and Matthay RA. Lung Cancer: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2011; 32(4):605-+.
8.Baldwin DR, Hansell DM, Duffy SW and Field JK. Lung cancer screening with low dose computed tomography. Bmj-Brit Med J. 2014; 348.
9.Gonzalez M, Vignaud JM, Clement-Duchene C, Luc A, Wild P, Bertrand O, Thiberville L, Martinet Y, Benichou J and Paris C. Smoking, Occupational Risk Factors, and Bronchial Tumor Location A Possible Impact for Lung Cancer Computed Tomography Scan Screening. J Thorac Oncol. 2012; 7(1):128-136.
10.Kubik A, Zatloukal R, Tomasek L, Pauk N, Havel L and Dolezal J. Interactions between smoking and other lung cancer risk factors. Lung Cancer-J Iaslc. 2006; 52:S25-S25.
11.Bender E. Epidemiology: The dominant malignancy. Nature. 2014; 513(7517):S2-3.
12.Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol. 2007; 293(5):L1092-1098.
13.Li F, He J, Wei J, Cho WC and Liu X. Diversity of epithelial stem cell types in adult lung. Stem Cells Int. 2015; 2015:728307.
14.Rock JR and Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011; 27:493-512.
15.Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT and Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005; 121(6):823-835.
16.Cho HC, Lai CY, Shao LE and Yu J. Identification of tumorigenic cells in Kras(G12D)-induced lung adenocarcinoma. Cancer research. 2011; 71(23):7250-7258.
17.Xu X, Rock JR, Lu Y, Futtner C, Schwab B, Guinney J, Hogan BLM and Onaitis MW. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(13):4910-4915.
18.Desai TJ, Brownfield DG and Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014; 507(7491):190-194.
19.Lee YS and Bae SC. How do K-RAS-activated cells evade cellular defense mechanisms? Oncogene. 2016; 35(7):827-832.
20.Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH and Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(25):9530-9535.
21.Shackleton M, Quintana E, Fearon ER and Morrison SJ. Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution. Cell. 2009; 138(5):822-829.
22.Gupta PB, Chaffer CL and Weinberg RA. Cancer stem cells: mirage or reality? Nature Medicine. 2009; 15(9):1010-1012.
23.Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013; 15(4):338-344.
24.Meacham CE and Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501(7467):328-337.
25.Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-674.
26.Hu YP and Fu LW. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res. 2012; 2(3):340-356.
27.Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell death and differentiation. 2008; 15(3):504-514.
28.Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM and Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008; 456(7222):593-U533.
29.Hongo K, Tanaka J, Tsuno NH, Kawai K, Nishikawa T, Shuno Y, Sasaki K, Kaneko M, Hiyoshi M, Sunami E, Kitayama J, Takahashi K and Nagawa H. CD133(-) Cells, Derived From a Single Human Colon Cancer Cell Line, Are More Resistant to 5-Fluorouracil (FU) Than CD133(+) Cells, Dependent on the beta 1-Integrin Signaling. J Surg Res. 2012; 175(2):278-288.
30.Chen K, Huang YH and Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica. 2013; 34(6):732-740.
31.Friedmann-Morvinski D and Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014; 15(3):244-253.
32.Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J and Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature reviews Cancer. 2005; 5(11):899-904.
33.Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature genetics. 2006; 38(4):431-440.
34.Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009; 136(3):411-419.
35.Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS and Wu CW. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer research. 2010; 70(24):10433-10444.
36.Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W and Xu X. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012; 31(47):4898-4911.
37.Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH and Lim YC. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene. 2015; 34(18):2317-2324.
38.Chen Z, Wang T, Cai L, Su C, Zhong B, Lei Y and Xiang AP. Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells. Journal of experimental & clinical cancer research : CR. 2012; 31:10.
39.Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL, Cui W, Wang QL, Fu WJ, Liu Q, Qian C, Cui YH, et al. beta-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer research. 2013; 73(10):3181-3189.
40.Hochedlinger K, Yamada Y, Beard C and Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005; 121(3):465-477.
41.Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A and Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics. 2008; 40(5):499-507.
42.Mita AC, Mita MM, Nawrocki ST and Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008; 14(16):5000-5005.
43.Li C, Yan Y, Ji W, Bao L, Qian H, Chen L, Wu M, Chen H, Li Z and Su C. OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PloS one. 2012; 7(11):e49693.
44.Ling TY, Liu YL, Huang YK, Gu SY, Chen HK, Ho CC, Tsao PN, Tung YC, Chen HW, Cheng CH, Lin KH and Lin FH. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin--microbubble scaffold. Biomaterials. 2014; 35(22):5660-5669.
45.Chen K, Huang YH and Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013; 34(6):732-740.
46.Weinstein IB and Joe A. Oncogene addiction. Cancer research. 2008; 68(9):3077-3080; discussion 3080.
47.Apostolou E and Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature. 2013; 502(7472):462-471.
48.Nishi M, Sakai Y, Akutsu H, Nagashima Y, Quinn G, Masui S, Kimura H, Perrem K, Umezawa A, Yamamoto N, Lee SW and Ryo A. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene. 2014; 33(5):643-652.
49.Hackett JA and Greider CW. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene. 2002; 21(4):619-626.
50.Kyo S and Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy? Oncogene. 2002; 21(4):688-697.
51.Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R. Wnt/beta-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells. Science. 2012; 336(6088):1549-1554.
52.Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer research. 2006; 66(19):9339-9344.
53.Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(7):3983-3988.
54.Ho MM, Ng AV, Lam S and Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research. 2007; 67(10):4827-4833.
55.Cao L, Li CG, Shen SW, Yan Y, Ji WD, Wang JH, Qian HH, Jiang XQ, Li ZG, Wu MC, Zhang Y and Su CQ. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. Bmc Cancer. 2013; 13.
56.Wen K, Fu Z, Wu X, Feng J, Chen W and Qian J. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer letters. 2013; 333(1):56-65.
57.Mita AC, Mita MM, Nawrocki ST and Giles FJ. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clinical Cancer Research. 2008; 14(16):5000-5005.
58.Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer letters. 2012; 320(2):130-137.
59.Ferrara N and Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016.
60.Niu G and Chen XY. Vascular Endothelial Growth Factor as an Anti-Angiogenic Target for Cancer Therapy. Curr Drug Targets. 2010; 11(8):1000-1017.
61.Ferrara N, Hillan KJ and Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Bioph Res Co. 2005; 333(2):328-335.
62.Chen HX and Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009; 6(8):465-477.
63.Bergers G and Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature reviews Cancer. 2008; 8(8):592-603.
64.Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S and Verma IM. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(11):4274-4280.
65.Fan YL, Zheng M, Tang YL and Liang XH. A new perspective of vasculogenic mimicry: EMT and cancer stem cells. Oncol Lett. 2013; 6(5):1174-1180.
66.Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM and Kerbel RS. Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1 (vol 69, pg 7243, 2009). Cancer research. 2009; 69(20):8216-8216.
67.Lai CY, Schwartz BE and Hsu MY. CD133(+) Melanoma Subpopulations Contribute to Perivascular Niche Morphogenesis and Tumorigenicity through Vasculogenic Mimicry. Cancer research. 2012; 72(19):5111-5118.
68.Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, Yao Z, Dong XY, Zhao N and Liu N. CD133(+) cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013; 32(5):544-553.
69.Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and Tabar V. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010; 468(7325):829-833.
70.Huang H, Bhat A, Woodnutt G and Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nature reviews Cancer. 2010; 10(8):575-585.
71.Martin V, Liu D, Fueyo J and Gomez-Manzano C. Tie2: a journey from normal angiogenesis to cancer and beyond. Histol Histopathol. 2008; 23(6):773-780.
72.Fukuhara S, Sako K, Noda K, Zhang JH, Minami M and Mochizuki N. Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histology and Histopathology. 2010; 25(3):387-396.
73.Fagiani E and Christofori G. Angiopoietins in angiogenesis. Cancer letters. 2013; 328(1):18-26.
74.Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu JH, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012; 122(6):1991-2005.
75.Hasenstein JR, Kasmerchak K, Buehler D, Hafez GR, Cleary K, Moody JS and Kozak KR. Efficacy of Tie2 Receptor Antagonism in Angiosarcoma. Neoplasia. 2012; 14(2):131-U162.
76.Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC and Keith B. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & development. 2006; 20(5):557-570.
77.Coyne CB and Bergelson JM. CAR: A virus receptor within the tight junction. Adv Drug Deliver Rev. 2005; 57(6):869-882.
78.Hauwel M, Furon E and Gasque P. Molecular and cellular insights into the coxsackle-adenovirus receptor: Role in cellular interactions in the stem cell niche. Brain Res Rev. 2005; 48(2):265-272.
79.Sun F, Li YX, Jia TY, Ling Y, Liang L, Liu G, Chen HP and Chen S. Differential expression of coxsackievirus and adenovirus receptor on alveolar epithelial cells between fetal and adult mice determines their different susceptibility to coxsackievirus B infection. Arch Virol. 2012; 157(6):1101-1111.
80.Excoffon KJ, Hruska-Hageman A, Klotz M, Traver GL and Zabner J. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci. 2004; 117(Pt 19):4401-4409.
81.Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisen J and Philipson L. Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res. 2000; 255(1):47-55.
82.Stecker K, Koschel A, Wiedenmann B and Anders M. Loss of Coxsackie and adenovirus receptor downregulates alpha-catenin expression. Brit J Cancer. 2009; 101(9):1574-1579.
83.Hussain F, Morton PE, Snippe M, Sullivan J, Farmer C, Martin-Fernandez ML, Parsons M and Santis G. CAR Modulates E-Cadherin Dynamics in the Presence of Adenovirus Type 5. Plos One. 2011; 6(8).
84.Huang KC, Yasruel Z, Guerin C, Holland PC and Nalbantoglu J. Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: Binding to actin. Febs Lett. 2007; 581(14):2702-2708.
85.Fok PT, Huang KC, Holland PC and Nalbantoglu J. The coxsackie and adenovirus receptor binds microtubules and plays a role in cell migration. J Biol Chem. 2007; 282(10):7512-7521.
86.Zhang LL, He DL, Li X, Li L, Zhu GD, Zhang D and Wang XY. Overexpression of coxsackie and adenovirus receptor inhibit growth of human bladder cancer cell in vitro and in vivo. Acta Pharmacol Sin. 2007; 28(6):895-900.
87.Rauen KA, Sudilovsky D, Le JL, Chew KL, Hann B, Weinberg V, Schmitt LD and McCormick F. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: Potential relevance to gene therapy. Cancer Res. 2002; 62(13):3812-3818.
88.Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J and Hsieh JT. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 2000; 60(18):5031-5036.
89.Luo Y, Jiang YG, He DL, Zhang LL, Hou Z and Li MC. [Expression of coxsackie B virus-adenovirus receptor in prostate cancer Du145 and LNCaP cell lines and its significance]. Zhonghua Nan Ke Xue. 2007; 13(10):899-902.
90.Wunder T, Schumacher U and Friedrich RE. Coxsackie Adenovirus Receptor Expression in Carcinomas of the Head and Neck. Anticancer Res. 2012; 32(3):1057-1062.
91.Chen ZL, Wang Q, Sun JR, Gu AK, Jin M, Shen ZQ, Qiu ZG, Wang JF, Wang XW, Zhan ZL and Li JW. Expression of the coxsackie and adenovirus receptor in human lung cancers. Tumor Biol. 2013; 34(1):17-24.
92.Wunder T, Schmid K, Wicklein D, Groitl P, Dobner T, Lange T, Anders M and Schumacher U. Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection. Cancer Gene Ther. 2013; 20(1):25-32.
93.Okegawa T, Pong RC, Li YM, Bergelson JM, Sagalowsky AI and Hsieh JT. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: A functional analysis of CAR protein structure. Cancer research. 2001; 61(17):6592-6600.
94.Qin M, Escuadro B, Dohadwala M, Sharma S and Batra RK. A novel role for the coxsackie adenovirus receptor in mediating tumor formation by lung cancer cells. Cancer Res. 2004; 64(18):6377-6380.
95.Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH and Kondo E. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene. 2014; 33(10):1274-1286.
96.Zhang XC, Fang BL, Mohan R and Chang JY. Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiother Oncol. 2012; 105(2):250-257.
97.Bruning A, Stickeler E, Diederich D, Walz L, Rohleder H, Friese K and Runnebaum IB. Coxsackie and adenovirus receptor promotes adenocarcinoma cell survival and is expressionally activated after transition from preneoplastic precursor lesions to invasive adenocarcinomas. Clin Cancer Res. 2005; 11(12):4316-4320.
98.Chung SK, Kim JY, Lim JY, Park YM, Hwang HY, Nam JH and Park SI. Transcription Factor Sp1 Is Involved in Expressional Regulation of Coxsackie and Adenovirus Receptor in Cancer Cells. J Biomed Biotechnol. 2011.
99.Kuster K, Koschel A, Rohwer N, Fischer A, Wiedenmann B and Anders M. Downregulation of the coxsackie and adenovirus receptor in cancer cells by hypoxia depends on HIF-1 alpha. Cancer Gene Ther. 2010; 17(2):141-146.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top