|
1.Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015; 65(2):87-108. 2.Hsiao AJ, Chen LH and Lu TH. Ten leading causes of death in Taiwan: A comparison of two grouping lists. J Formos Med Assoc. 2015; 114(8):679-680. 3.(2012). Causes of Death in Taiwan. In: Department of Statistics MoHaW, Executive Yuan, Taipei, Taiwan, ed. 4.衛生福利部. (2015). 衛生福利統計動向. 5.Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17(3):313-319. 6.Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer. 2013; 13(10):714-726. 7.Dela Cruz CS, Tanoue LT and Matthay RA. Lung Cancer: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2011; 32(4):605-+. 8.Baldwin DR, Hansell DM, Duffy SW and Field JK. Lung cancer screening with low dose computed tomography. Bmj-Brit Med J. 2014; 348. 9.Gonzalez M, Vignaud JM, Clement-Duchene C, Luc A, Wild P, Bertrand O, Thiberville L, Martinet Y, Benichou J and Paris C. Smoking, Occupational Risk Factors, and Bronchial Tumor Location A Possible Impact for Lung Cancer Computed Tomography Scan Screening. J Thorac Oncol. 2012; 7(1):128-136. 10.Kubik A, Zatloukal R, Tomasek L, Pauk N, Havel L and Dolezal J. Interactions between smoking and other lung cancer risk factors. Lung Cancer-J Iaslc. 2006; 52:S25-S25. 11.Bender E. Epidemiology: The dominant malignancy. Nature. 2014; 513(7517):S2-3. 12.Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol. 2007; 293(5):L1092-1098. 13.Li F, He J, Wei J, Cho WC and Liu X. Diversity of epithelial stem cell types in adult lung. Stem Cells Int. 2015; 2015:728307. 14.Rock JR and Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011; 27:493-512. 15.Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT and Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005; 121(6):823-835. 16.Cho HC, Lai CY, Shao LE and Yu J. Identification of tumorigenic cells in Kras(G12D)-induced lung adenocarcinoma. Cancer research. 2011; 71(23):7250-7258. 17.Xu X, Rock JR, Lu Y, Futtner C, Schwab B, Guinney J, Hogan BLM and Onaitis MW. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(13):4910-4915. 18.Desai TJ, Brownfield DG and Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014; 507(7491):190-194. 19.Lee YS and Bae SC. How do K-RAS-activated cells evade cellular defense mechanisms? Oncogene. 2016; 35(7):827-832. 20.Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH and Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(25):9530-9535. 21.Shackleton M, Quintana E, Fearon ER and Morrison SJ. Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution. Cell. 2009; 138(5):822-829. 22.Gupta PB, Chaffer CL and Weinberg RA. Cancer stem cells: mirage or reality? Nature Medicine. 2009; 15(9):1010-1012. 23.Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013; 15(4):338-344. 24.Meacham CE and Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501(7467):328-337. 25.Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-674. 26.Hu YP and Fu LW. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res. 2012; 2(3):340-356. 27.Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell death and differentiation. 2008; 15(3):504-514. 28.Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM and Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008; 456(7222):593-U533. 29.Hongo K, Tanaka J, Tsuno NH, Kawai K, Nishikawa T, Shuno Y, Sasaki K, Kaneko M, Hiyoshi M, Sunami E, Kitayama J, Takahashi K and Nagawa H. CD133(-) Cells, Derived From a Single Human Colon Cancer Cell Line, Are More Resistant to 5-Fluorouracil (FU) Than CD133(+) Cells, Dependent on the beta 1-Integrin Signaling. J Surg Res. 2012; 175(2):278-288. 30.Chen K, Huang YH and Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica. 2013; 34(6):732-740. 31.Friedmann-Morvinski D and Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014; 15(3):244-253. 32.Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J and Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature reviews Cancer. 2005; 5(11):899-904. 33.Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature genetics. 2006; 38(4):431-440. 34.Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009; 136(3):411-419. 35.Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS and Wu CW. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer research. 2010; 70(24):10433-10444. 36.Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W and Xu X. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012; 31(47):4898-4911. 37.Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH and Lim YC. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene. 2015; 34(18):2317-2324. 38.Chen Z, Wang T, Cai L, Su C, Zhong B, Lei Y and Xiang AP. Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells. Journal of experimental & clinical cancer research : CR. 2012; 31:10. 39.Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL, Cui W, Wang QL, Fu WJ, Liu Q, Qian C, Cui YH, et al. beta-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer research. 2013; 73(10):3181-3189. 40.Hochedlinger K, Yamada Y, Beard C and Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005; 121(3):465-477. 41.Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A and Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics. 2008; 40(5):499-507. 42.Mita AC, Mita MM, Nawrocki ST and Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008; 14(16):5000-5005. 43.Li C, Yan Y, Ji W, Bao L, Qian H, Chen L, Wu M, Chen H, Li Z and Su C. OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PloS one. 2012; 7(11):e49693. 44.Ling TY, Liu YL, Huang YK, Gu SY, Chen HK, Ho CC, Tsao PN, Tung YC, Chen HW, Cheng CH, Lin KH and Lin FH. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin--microbubble scaffold. Biomaterials. 2014; 35(22):5660-5669. 45.Chen K, Huang YH and Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013; 34(6):732-740. 46.Weinstein IB and Joe A. Oncogene addiction. Cancer research. 2008; 68(9):3077-3080; discussion 3080. 47.Apostolou E and Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature. 2013; 502(7472):462-471. 48.Nishi M, Sakai Y, Akutsu H, Nagashima Y, Quinn G, Masui S, Kimura H, Perrem K, Umezawa A, Yamamoto N, Lee SW and Ryo A. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene. 2014; 33(5):643-652. 49.Hackett JA and Greider CW. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene. 2002; 21(4):619-626. 50.Kyo S and Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy? Oncogene. 2002; 21(4):688-697. 51.Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R. Wnt/beta-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells. Science. 2012; 336(6088):1549-1554. 52.Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer research. 2006; 66(19):9339-9344. 53.Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(7):3983-3988. 54.Ho MM, Ng AV, Lam S and Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research. 2007; 67(10):4827-4833. 55.Cao L, Li CG, Shen SW, Yan Y, Ji WD, Wang JH, Qian HH, Jiang XQ, Li ZG, Wu MC, Zhang Y and Su CQ. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. Bmc Cancer. 2013; 13. 56.Wen K, Fu Z, Wu X, Feng J, Chen W and Qian J. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer letters. 2013; 333(1):56-65. 57.Mita AC, Mita MM, Nawrocki ST and Giles FJ. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clinical Cancer Research. 2008; 14(16):5000-5005. 58.Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer letters. 2012; 320(2):130-137. 59.Ferrara N and Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016. 60.Niu G and Chen XY. Vascular Endothelial Growth Factor as an Anti-Angiogenic Target for Cancer Therapy. Curr Drug Targets. 2010; 11(8):1000-1017. 61.Ferrara N, Hillan KJ and Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Bioph Res Co. 2005; 333(2):328-335. 62.Chen HX and Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009; 6(8):465-477. 63.Bergers G and Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature reviews Cancer. 2008; 8(8):592-603. 64.Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S and Verma IM. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(11):4274-4280. 65.Fan YL, Zheng M, Tang YL and Liang XH. A new perspective of vasculogenic mimicry: EMT and cancer stem cells. Oncol Lett. 2013; 6(5):1174-1180. 66.Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM and Kerbel RS. Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1 (vol 69, pg 7243, 2009). Cancer research. 2009; 69(20):8216-8216. 67.Lai CY, Schwartz BE and Hsu MY. CD133(+) Melanoma Subpopulations Contribute to Perivascular Niche Morphogenesis and Tumorigenicity through Vasculogenic Mimicry. Cancer research. 2012; 72(19):5111-5118. 68.Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, Yao Z, Dong XY, Zhao N and Liu N. CD133(+) cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013; 32(5):544-553. 69.Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and Tabar V. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010; 468(7325):829-833. 70.Huang H, Bhat A, Woodnutt G and Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nature reviews Cancer. 2010; 10(8):575-585. 71.Martin V, Liu D, Fueyo J and Gomez-Manzano C. Tie2: a journey from normal angiogenesis to cancer and beyond. Histol Histopathol. 2008; 23(6):773-780. 72.Fukuhara S, Sako K, Noda K, Zhang JH, Minami M and Mochizuki N. Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histology and Histopathology. 2010; 25(3):387-396. 73.Fagiani E and Christofori G. Angiopoietins in angiogenesis. Cancer letters. 2013; 328(1):18-26. 74.Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu JH, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012; 122(6):1991-2005. 75.Hasenstein JR, Kasmerchak K, Buehler D, Hafez GR, Cleary K, Moody JS and Kozak KR. Efficacy of Tie2 Receptor Antagonism in Angiosarcoma. Neoplasia. 2012; 14(2):131-U162. 76.Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC and Keith B. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & development. 2006; 20(5):557-570. 77.Coyne CB and Bergelson JM. CAR: A virus receptor within the tight junction. Adv Drug Deliver Rev. 2005; 57(6):869-882. 78.Hauwel M, Furon E and Gasque P. Molecular and cellular insights into the coxsackle-adenovirus receptor: Role in cellular interactions in the stem cell niche. Brain Res Rev. 2005; 48(2):265-272. 79.Sun F, Li YX, Jia TY, Ling Y, Liang L, Liu G, Chen HP and Chen S. Differential expression of coxsackievirus and adenovirus receptor on alveolar epithelial cells between fetal and adult mice determines their different susceptibility to coxsackievirus B infection. Arch Virol. 2012; 157(6):1101-1111. 80.Excoffon KJ, Hruska-Hageman A, Klotz M, Traver GL and Zabner J. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci. 2004; 117(Pt 19):4401-4409. 81.Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisen J and Philipson L. Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res. 2000; 255(1):47-55. 82.Stecker K, Koschel A, Wiedenmann B and Anders M. Loss of Coxsackie and adenovirus receptor downregulates alpha-catenin expression. Brit J Cancer. 2009; 101(9):1574-1579. 83.Hussain F, Morton PE, Snippe M, Sullivan J, Farmer C, Martin-Fernandez ML, Parsons M and Santis G. CAR Modulates E-Cadherin Dynamics in the Presence of Adenovirus Type 5. Plos One. 2011; 6(8). 84.Huang KC, Yasruel Z, Guerin C, Holland PC and Nalbantoglu J. Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: Binding to actin. Febs Lett. 2007; 581(14):2702-2708. 85.Fok PT, Huang KC, Holland PC and Nalbantoglu J. The coxsackie and adenovirus receptor binds microtubules and plays a role in cell migration. J Biol Chem. 2007; 282(10):7512-7521. 86.Zhang LL, He DL, Li X, Li L, Zhu GD, Zhang D and Wang XY. Overexpression of coxsackie and adenovirus receptor inhibit growth of human bladder cancer cell in vitro and in vivo. Acta Pharmacol Sin. 2007; 28(6):895-900. 87.Rauen KA, Sudilovsky D, Le JL, Chew KL, Hann B, Weinberg V, Schmitt LD and McCormick F. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: Potential relevance to gene therapy. Cancer Res. 2002; 62(13):3812-3818. 88.Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J and Hsieh JT. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 2000; 60(18):5031-5036. 89.Luo Y, Jiang YG, He DL, Zhang LL, Hou Z and Li MC. [Expression of coxsackie B virus-adenovirus receptor in prostate cancer Du145 and LNCaP cell lines and its significance]. Zhonghua Nan Ke Xue. 2007; 13(10):899-902. 90.Wunder T, Schumacher U and Friedrich RE. Coxsackie Adenovirus Receptor Expression in Carcinomas of the Head and Neck. Anticancer Res. 2012; 32(3):1057-1062. 91.Chen ZL, Wang Q, Sun JR, Gu AK, Jin M, Shen ZQ, Qiu ZG, Wang JF, Wang XW, Zhan ZL and Li JW. Expression of the coxsackie and adenovirus receptor in human lung cancers. Tumor Biol. 2013; 34(1):17-24. 92.Wunder T, Schmid K, Wicklein D, Groitl P, Dobner T, Lange T, Anders M and Schumacher U. Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection. Cancer Gene Ther. 2013; 20(1):25-32. 93.Okegawa T, Pong RC, Li YM, Bergelson JM, Sagalowsky AI and Hsieh JT. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: A functional analysis of CAR protein structure. Cancer research. 2001; 61(17):6592-6600. 94.Qin M, Escuadro B, Dohadwala M, Sharma S and Batra RK. A novel role for the coxsackie adenovirus receptor in mediating tumor formation by lung cancer cells. Cancer Res. 2004; 64(18):6377-6380. 95.Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH and Kondo E. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene. 2014; 33(10):1274-1286. 96.Zhang XC, Fang BL, Mohan R and Chang JY. Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiother Oncol. 2012; 105(2):250-257. 97.Bruning A, Stickeler E, Diederich D, Walz L, Rohleder H, Friese K and Runnebaum IB. Coxsackie and adenovirus receptor promotes adenocarcinoma cell survival and is expressionally activated after transition from preneoplastic precursor lesions to invasive adenocarcinomas. Clin Cancer Res. 2005; 11(12):4316-4320. 98.Chung SK, Kim JY, Lim JY, Park YM, Hwang HY, Nam JH and Park SI. Transcription Factor Sp1 Is Involved in Expressional Regulation of Coxsackie and Adenovirus Receptor in Cancer Cells. J Biomed Biotechnol. 2011. 99.Kuster K, Koschel A, Rohwer N, Fischer A, Wiedenmann B and Anders M. Downregulation of the coxsackie and adenovirus receptor in cancer cells by hypoxia depends on HIF-1 alpha. Cancer Gene Ther. 2010; 17(2):141-146.
|