|
1Wu, P. C., Wu, V. C. & Tarng, D. C. Chronic kidney disease in Taiwan''s aging population: something far more than a distant ship''s smoke on the horizon. J Formos Med Assoc 113, 890-891, doi:10.1016/j.jfma.2014.03.013 (2014). 2Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 72, 1-11 (2010). 3Lesaffer, G. et al. Intradialytic removal of protein-bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrol Dial Transplant 15, 50-57 (2000). 4Vanholder, R., Glorieux, G., De Smet, R., Lameire, N. & European Uremic Toxin Work, G. New insights in uremic toxins. Kidney Int Suppl, S6-10, doi:10.1046/j.1523-1755.63.s84.43.x (2003). 5Clyne, N. Physical working capacity in uremic patients. Scand J Urol Nephrol 30, 247-252 (1996). 6Nishikawa, M. et al. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant 30, 934-942, doi:10.1093/ndt/gfv103 (2015). 7Enomoto, A. & Niwa, T. Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial 11 Suppl 1, S27-31, doi:10.1111/j.1744-9987.2007.00515.x (2007). 8Nakagawa, N. et al. An oral adsorbent, AST-120, suppresses oxidative stress in uremic rats. Am J Nephrol 26, 455-461, doi:10.1159/000096423 (2006). 9Shimoishi, K. et al. An oral adsorbent, AST-120 protects against the progression of oxidative stress by reducing the accumulation of indoxyl sulfate in the systemic circulation in renal failure. Pharm Res 24, 1283-1289, doi:10.1007/s11095-007-9248-x (2007). 10Motojima, M., Hosokawa, A., Yamato, H., Muraki, T. & Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63, 1671-1680, doi:10.1046/j.1523-1755.2003.00906.x (2003). 11Dou, L. et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5, 1302-1308, doi:10.1111/j.1538-7836.2007.02540.x (2007). 12Shimizu, H., Hirose, Y., Nishijima, F., Tsubakihara, Y. & Miyazaki, H. ROS and PDGF-beta [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am J Physiol Cell Physiol 297, C389-396, doi:10.1152/ajpcell.00206.2009 (2009). 13Yang, K. et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett 234, 110-119, doi:10.1016/j.toxlet.2015.01.021 (2015). 14Shimizu, H. et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-kappaB, p53, ERK, and JNK in proximal tubular cells. Life Sci 90, 525-530, doi:10.1016/j.lfs.2012.01.013 (2012). 15Deldicque, L., Bertrand, L., Patton, A., Francaux, M. & Baar, K. ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1. PLoS One 6, e20993, doi:10.1371/journal.pone.0020993 (2011). 16Madaro, L., Marrocco, V., Carnio, S., Sandri, M. & Bouche, M. Intracellular signaling in ER stress-induced autophagy in skeletal muscle cells. FASEB J 27, 1990-2000, doi:10.1096/fj.12-215475 (2013). 17Cuthbertson, D. et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19, 422-424, doi:10.1096/fj.04-2640fje (2005). 18Rennie, M. J. Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab 34, 377-381, doi:10.1139/H09-012 (2009). 19Pierre, N. et al. Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 450, 459-463, doi:10.1016/j.bbrc.2014.05.143 (2014). 20Barbieri, E. & Sestili, P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012, 982794, doi:10.1155/2012/982794 (2012). 21Chen, C. T., Lin, S. H., Chen, J. S. & Hsu, Y. J. Muscle wasting in hemodialysis patients: new therapeutic strategies for resolving an old problem. ScientificWorldJournal 2013, 643954, doi:10.1155/2013/643954 (2013). 22Bonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6, 25-39, doi:10.1242/dmm.010389 (2013). 23Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17, 1807-1819, doi:10.1681/ASN.2006010083 (2006). 24Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708, doi:10.1126/science.1065874 (2001). 25Rosenberg, I. H. Sarcopenia: origins and clinical relevance. J Nutr 127, 990S-991S (1997). 26Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412-423, doi:10.1093/ageing/afq034 (2010). 27Clark, B. C. & Manini, T. M. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 63, 829-834 (2008). 28Fahal, I. H. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant 29, 1655-1665, doi:10.1093/ndt/gft070 (2014). 29Souza, V. A., Oliveira, D., Mansur, H. N., Fernandes, N. M. & Bastos, M. G. Sarcopenia in chronic kidney disease. J Bras Nefrol 37, 98-105, doi:10.5935/0101-2800.20150014 (2015). 30Abmayr, S. M. & Pavlath, G. K. Myoblast fusion: lessons from flies and mice. Development 139, 641-656, doi:10.1242/dev.068353 (2012). 31Tamir, Y. & Bengal, E. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem 275, 34424-34432, doi:10.1074/jbc.M005815200 (2000). 32Singh, K. et al. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes Dev 29, 513-525, doi:10.1101/gad.254532.114 (2015). 33Kaliman, P., Vinals, F., Testar, X., Palacin, M. & Zorzano, A. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J Biol Chem 271, 19146-19151 (1996). 34Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol Rev 91, 1447-1531, doi:10.1152/physrev.00031.2010 (2011). 35Lee, K. Y. et al. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun 6, 8054, doi:10.1038/ncomms9054 (2015). 36Brown, D. M., Parr, T. & Brameld, J. M. Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J Muscle Res Cell Motil 32, 383-390, doi:10.1007/s10974-011-9267-4 (2012). 37Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A. & Rudnicki, M. A. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144, 631-643 (1999). 38Yang, Z. J. et al. p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 22, 560-573, doi:10.1038/cdd.2014.189 (2015). 39Sambasivan, R. et al. The small chromatin-binding protein p8 coordinates the association of anti-proliferative and pro-myogenic proteins at the myogenin promoter. J Cell Sci 122, 3481-3491, doi:10.1242/jcs.048678 (2009). 40Wei, Q. & Paterson, B. M. Regulation of MyoD function in the dividing myoblast. FEBS Lett 490, 171-178 (2001). 41Ohkawa, Y. et al. Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem 282, 6564-6570, doi:10.1074/jbc.M608898200 (2007). 42Potthoff, M. J. & Olson, E. N. MEF2: a central regulator of diverse developmental programs. Development 134, 4131-4140, doi:10.1242/dev.008367 (2007). 43Yokoi, H. & Yanagita, M. Decrease of muscle volume in chronic kidney disease: the role of mitochondria in skeletal muscle. Kidney Int 85, 1258-1260, doi:10.1038/ki.2013.539 (2014). 44Lee, W. C., Li, L. C., Chen, J. B. & Chang, H. W. Indoxyl sulfate-induced oxidative stress, mitochondrial dysfunction, and impaired biogenesis are partly protected by vitamin C and N-acetylcysteine. ScientificWorldJournal 2015, 620826, doi:10.1155/2015/620826 (2015). 45Mozar, A. et al. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant 27, 2176-2181, doi:10.1093/ndt/gfr647 (2012). 46Mozar, A. et al. Uremic toxin indoxyl sulfate inhibits human vascular smooth muscle cell proliferation. Ther Apher Dial 15, 135-139, doi:10.1111/j.1744-9987.2010.00885.x (2011). 47Kawakami, T. et al. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am J Physiol Renal Physiol 299, F568-576, doi:10.1152/ajprenal.00659.2009 (2010). 48Muteliefu, G., Enomoto, A. & Niwa, T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J Ren Nutr 19, 29-32, doi:10.1053/j.jrn.2008.10.014 (2009). 49Kim, Y. H., Kwak, K. A., Gil, H. W., Song, H. Y. & Hong, S. Y. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol Toxicol 14, 60, doi:10.1186/2050-6511-14-60 (2013). 50Wang, W. J., Cheng, M. H., Sun, M. F., Hsu, S. F. & Weng, C. S. Indoxyl sulfate induces renin release and apoptosis of kidney mesangial cells. J Toxicol Sci 39, 637-643 (2014). 51Niwa, T. & Shimizu, H. Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr 22, 102-106, doi:10.1053/j.jrn.2011.10.032 (2012). 52van den Eijnde, S. M. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci 114, 3631-3642 (2001). 53Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63, 1934-1943, doi:10.1046/j.1523-1755.2003.00924.x (2003). 54Bentzinger, C. F., Wang, Y. X. & Rudnicki, M. A. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a008342 (2012). 55Burks, T. N. & Cohn, R. D. Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle 1, 19, doi:10.1186/2044-5040-1-19 (2011). 56Sartori, R., Gregorevic, P. & Sandri, M. TGFbeta and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25, 464-471, doi:10.1016/j.tem.2014.06.002 (2014). 57Furutani, Y., Umemoto, T., Murakami, M., Matsui, T. & Funaba, M. Role of endogenous TGF-beta family in myogenic differentiation of C2C12 cells. J Cell Biochem 112, 614-624, doi:10.1002/jcb.22953 (2011). 58Liu, D., Black, B. L. & Derynck, R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15, 2950-2966, doi:10.1101/gad.925901 (2001). 59Elkina, Y., von Haehling, S., Anker, S. D. & Springer, J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2, 143-151, doi:10.1007/s13539-011-0035-5 (2011). 60Moon, S. J., Kim, T. H., Yoon, S. Y., Chung, J. H. & Hwang, H. J. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. PLoS One 10, e0130740, doi:10.1371/journal.pone.0130740 (2015). 61Wang, W. et al. The Effects of Indoxyl Sulfate on Human Umbilical Cord-Derived Mesenchymal Stem Cells In Vitro. Cell Physiol Biochem 38, 401-414, doi:10.1159/000438639 (2016). 62Hong, F. et al. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J 16, 1633-1635, doi:10.1096/fj.02-0060fje (2002). 63Fujio, Y. et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19, 5073-5082 (1999). 64Xu, Q. & Wu, Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275, 36750-36757, doi:10.1074/jbc.M005030200 (2000). 65Langley, B. et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277, 49831-49840, doi:10.1074/jbc.M204291200 (2002). 66Zhu, S., Goldschmidt-Clermont, P. J. & Dong, C. Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability. Circ Res 94, 617-625, doi:10.1161/01.RES.0000118599.25944.D5 (2004). 67Wang, X. H. & Mitch, W. E. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10, 504-516, doi:10.1038/nrneph.2014.112 (2014). 68Rajan, V. R. & Mitch, W. E. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol 23, 527-535, doi:10.1007/s00467-007-0594-z (2008).
|