跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐婉容
研究生(外文):Un-Iong Ao
論文名稱:硫酸吲哚酚在尿毒症引起的肌少症之發展所扮演的角色
論文名稱(外文):The roles of Indoxyl Sulfate in the development of Uremic Sarcopenia
指導教授:姜至剛姜至剛引用關係
指導教授(外文):Chih-Kang Chiang
口試委員:劉興華許美鈴楊榮森
口試委員(外文):Shing-Hwa LiuMei-Ling SheuRong-Sen Yang
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:61
中文關鍵詞:末期腎病變慢性腎臟病硫酸吲哚酚肌少症骨骼肌分化
外文關鍵詞:End-Stage Renal DiseaseChronic Kidney DiseaseIndoxyl sulfateSarcopeniaMyosin heavy chainMyogeninmyoblast determination protein 1differentiationreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
末期腎病變(End-Stage Renal Disease,ESRD)的盛行率及發生率在台灣及世界持續攀升,已經成為重要的社會醫療議題。當慢性腎臟病 (Chronic Kidney Disease, CKD) 進展成為末期腎病變的過程中,患者因腎功能衰退,而堆積身體產生代謝廢物。文獻指出:部份代謝廢物會影響正常器官功能,因此被稱為尿毒素 (Uremic toxins)。其中,硫酸吲哚酚 (Indoxyl Sulfate, IS) 是蛋白質中的胺基酸tryptophan 經腸道細菌及肝臟代謝而產生,為一種親蛋白的尿毒素,主要經由腎臟排出體外。CKD患者因腎功能衰退,無法排除體內的IS,而累積於體內。而肌少症 (Sarcopenia) 是指肌肉的質量、肌力、耐力減少的現象,是一種老化及退化症狀。 Sarcopenia 對末期腎病變 患者影響包括加速器官功能退化、容易跌倒、甚至死亡。MyoD、Myogenin和Myosin heavy chain (MHC),為骨骼肌細胞分化重要的biomarker,其中MyoD和Myogenin皆屬於肌肉發育調控因子(Myogenic Regulatory Factor,MRF),為transcription factors,在肌肉分化過程中會依序出現。MHC是細胞骨架的一種,在肌肉收縮過程中扮演著重要的角色。過去有文獻指出:尿毒素會影響心肌細胞功能,對骨骼肌的分化影響則未著墨。本研究使用小鼠骨骼肌細胞母細胞株 (C2C12 myoblast)探討 IS 對骨骼肌細胞分化的影響。本研究主要分為三個部分:(1) IS在生長培養液處理C2C12 myoblast 72小時,探討IS對其母細胞株的增生及毒性分析;(2) C2C12 myoblast在生長培養液中暴露IS兩天,再於分化培養液中暴露IS四天,以探討IS對其母細胞株分化的影響;(3) C2C12分化四天後再處理IS 72小時,以探討IS對其分化後的肌小管(myotube)的降解(degradation)的影響。本研究主要使用cell proliferation assay、flow cytometry、H&E stain、Western Blot 和 qPCR進行分析。研究結果顯示,IS 不會抑制C2C12增生,但會誘發ROS的產生以抑制AKT磷酸化,使分化明顯受到抑制,在Western Blot 結果顯示1mM的IS 會抑制MHC 和 Myogenin蛋白及RNA的表現,但MyoD的蛋白及RNA表現量未受到影響。因此,本研究後續將探討IS是否經由影響MyoD的功能進而減少下游蛋白Myogenin以及MHC的表現。本研究證實:尿毒素IS可以抑制骨骼肌肉母細胞分化,進而解釋末期腎病變患者出現高比例的肌少症的可能分子機轉之一。

End-Stage Renal Disease (ESRD) is highly incident and prevalent in Taiwan and the world. During the progression of chronic kidney disease (CKD) to ESRD, the metabolic wastes (uremic toxins) accumulate in the body leading to systemic organ dysfunction, including high cardiovascular events, immune dysfunction and cachexia. Indoxyl sulfate (IS), a protein-bound uremic toxin, is metabolized from indole in liver, which is metabolized from tryptophan by bacteria tryptophanase in the intestine. Sarcopenia is a phenomenon of reducing muscle mass, strength, and function, which can increase organ degeneration and mortality rates. Myosin heavy chain (MHC), Myogenin (MyoG) and myoblast determination protein 1 (MyoD) are important muscle skeleton differentiation biomarkers. MyoG and MyoD are transcription factors of myogenic regulatory factor (MRF). MHC is cytoskeleton, the major role of muscle contraction. Previously, there was the articles suggested that uremic toxins were able to disturb function of cardiomyocytes. However, it remains unclear whether the IS is associated with the skeleton muscle dysfunction. In this study, we investigated the potential effects of IS on the differentiation of C2C12 myoblast. We divided our study into three parts. (1) To explore the potential proliferation inhibition of C2C12 myoblast by IS (2) To study the inhibition of myoblast differentiation by IS (3) To investigate the degradation of C2C12 differentiated myotube by IS. We applied cell proliferation assay, flow cytometry, H&E stain, Western Blot and qPCR to analyze possible mechanisms. In Cell proliferation assay, we found that IS did not inhibit C2C12 myoblast cell proliferation. H&E stain, Western Blot and qPCR displayed that IS suppressed C2C12 myoblast differentiation. In order to explore the possible mechanisms, we demonstrated that IS did not suppress C2C12 myoblast proliferation, but IS induced reactive oxygen species (ROS) with following inhibition of AKT phosphorylation during C2C12 myoblast differentiation. As shown in the Western Blot, IS (1mM) inhibits the expression of MHC and Myogenin, but not MyoD, in the transcriptional and translational level. Furthermore, the degradation of differentiated C2C12 myotube did not induced by IS treatment. In conclusion, this study proved that IS suppressed skeletal myoblast differentiation, and successfully shown the possible molecular mechanisms, which might explain, at least partially, the high prevalent rates of uremic sarcopenia.

Chinese abstract.............................................i
Abstract...................................................iii
List of Abbreviation.........................................v
Chapter 1 Introduction.......................................1
1.1 Chronic Kidney Disease...................................1
1.2 Uremic toxins............................................2
1.3 Indoxyl sulfate..........................................2
1.4 The effect of Indoxyl sulfate............................3
1.5 Muscle wasting and Sarcopenia............................5
1.6 Skeletal muscle differentiation..........................7
1.7 Myogenic regulatory factors (MRFs).......................8
1.8 Aim of this study.......................................10
Chapter 2 Materials and Methods.............................11
2.1 Flowchart...............................................11
2.2 Cell culture............................................12
2.3 Cell proliferation assay................................13
2.4 Cell viability assay....................................14
2.5 Hematoxylin and eosin (H&E) staining....................15
2.6 Myotube nuclear calculation.............................15
2.8 Protein extraction and immunoblotting...................16
2.9 RT-qPCR analysis........................................18
2.10 Statistical analysis...................................20
Chapter 3. Result...........................................21
3.1 IS exposure inhibited mytube formation, but did not affect cell viability..............................................21
3.2 C2C12 myoblast expose IS 0 to 1mM does not influence proliferationy..............................................21
3.3 IS decreased myogenic specific genes expression during muscle differentiation......................................22
3.4 IS enhanced TGF-β1 expression...........................23
3.5 IS induce ROS on C2C12 myoblast.........................23
3.6 Using a ROS inhibitor, NAC, replied skeletal muscle differentiation with 1mM IS treatment.......................24
3.7 IS inhibited myoblast differentiation through ROS.......25
3.8 IS could not induce atrophy on C2C12 myoblast...........25
Chapter 4. Discussion.......................................26
Chapter 6. Future work......................................31
Chapter 7. References.......................................32
Chapter 8. List of Tables and Figures.......................43
Figure I. Metabolism of Indoxyl sulfate and effect of AST-120 .............................................................3
Figure II. Possible aetiology of uraemic sarcopenia..........6
Figure III. The modal of MyoD in skeletal muscle.............9
Table1. Antibody for western blot...........................18
Table 2. C2C12 Primers for real-time PCR....................19
Figure 1....................................................43
Figure 2....................................................46
Figure 3....................................................48
Figure 4....................................................51
Figure 5....................................................53
Figure 6....................................................55
Figure 7....................................................57
Figure 8....................................................59
Supplementary figure 1......................................61



1Wu, P. C., Wu, V. C. & Tarng, D. C. Chronic kidney disease in Taiwan''s aging population: something far more than a distant ship''s smoke on the horizon. J Formos Med Assoc 113, 890-891, doi:10.1016/j.jfma.2014.03.013 (2014).
2Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 72, 1-11 (2010).
3Lesaffer, G. et al. Intradialytic removal of protein-bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrol Dial Transplant 15, 50-57 (2000).
4Vanholder, R., Glorieux, G., De Smet, R., Lameire, N. & European Uremic Toxin Work, G. New insights in uremic toxins. Kidney Int Suppl, S6-10, doi:10.1046/j.1523-1755.63.s84.43.x (2003).
5Clyne, N. Physical working capacity in uremic patients. Scand J Urol Nephrol 30, 247-252 (1996).
6Nishikawa, M. et al. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant 30, 934-942, doi:10.1093/ndt/gfv103 (2015).
7Enomoto, A. & Niwa, T. Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial 11 Suppl 1, S27-31, doi:10.1111/j.1744-9987.2007.00515.x (2007).
8Nakagawa, N. et al. An oral adsorbent, AST-120, suppresses oxidative stress in uremic rats. Am J Nephrol 26, 455-461, doi:10.1159/000096423 (2006).
9Shimoishi, K. et al. An oral adsorbent, AST-120 protects against the progression of oxidative stress by reducing the accumulation of indoxyl sulfate in the systemic circulation in renal failure. Pharm Res 24, 1283-1289, doi:10.1007/s11095-007-9248-x (2007).
10Motojima, M., Hosokawa, A., Yamato, H., Muraki, T. & Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63, 1671-1680, doi:10.1046/j.1523-1755.2003.00906.x (2003).
11Dou, L. et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5, 1302-1308, doi:10.1111/j.1538-7836.2007.02540.x (2007).
12Shimizu, H., Hirose, Y., Nishijima, F., Tsubakihara, Y. & Miyazaki, H. ROS and PDGF-beta [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am J Physiol Cell Physiol 297, C389-396, doi:10.1152/ajpcell.00206.2009 (2009).
13Yang, K. et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett 234, 110-119, doi:10.1016/j.toxlet.2015.01.021 (2015).
14Shimizu, H. et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-kappaB, p53, ERK, and JNK in proximal tubular cells. Life Sci 90, 525-530, doi:10.1016/j.lfs.2012.01.013 (2012).
15Deldicque, L., Bertrand, L., Patton, A., Francaux, M. & Baar, K. ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1. PLoS One 6, e20993, doi:10.1371/journal.pone.0020993 (2011).
16Madaro, L., Marrocco, V., Carnio, S., Sandri, M. & Bouche, M. Intracellular signaling in ER stress-induced autophagy in skeletal muscle cells. FASEB J 27, 1990-2000, doi:10.1096/fj.12-215475 (2013).
17Cuthbertson, D. et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19, 422-424, doi:10.1096/fj.04-2640fje (2005).
18Rennie, M. J. Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab 34, 377-381, doi:10.1139/H09-012 (2009).
19Pierre, N. et al. Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 450, 459-463, doi:10.1016/j.bbrc.2014.05.143 (2014).
20Barbieri, E. & Sestili, P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012, 982794, doi:10.1155/2012/982794 (2012).
21Chen, C. T., Lin, S. H., Chen, J. S. & Hsu, Y. J. Muscle wasting in hemodialysis patients: new therapeutic strategies for resolving an old problem. ScientificWorldJournal 2013, 643954, doi:10.1155/2013/643954 (2013).
22Bonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6, 25-39, doi:10.1242/dmm.010389 (2013).
23Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17, 1807-1819, doi:10.1681/ASN.2006010083 (2006).
24Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708, doi:10.1126/science.1065874 (2001).
25Rosenberg, I. H. Sarcopenia: origins and clinical relevance. J Nutr 127, 990S-991S (1997).
26Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412-423, doi:10.1093/ageing/afq034 (2010).
27Clark, B. C. & Manini, T. M. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 63, 829-834 (2008).
28Fahal, I. H. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant 29, 1655-1665, doi:10.1093/ndt/gft070 (2014).
29Souza, V. A., Oliveira, D., Mansur, H. N., Fernandes, N. M. & Bastos, M. G. Sarcopenia in chronic kidney disease. J Bras Nefrol 37, 98-105, doi:10.5935/0101-2800.20150014 (2015).
30Abmayr, S. M. & Pavlath, G. K. Myoblast fusion: lessons from flies and mice. Development 139, 641-656, doi:10.1242/dev.068353 (2012).
31Tamir, Y. & Bengal, E. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem 275, 34424-34432, doi:10.1074/jbc.M005815200 (2000).
32Singh, K. et al. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes Dev 29, 513-525, doi:10.1101/gad.254532.114 (2015).
33Kaliman, P., Vinals, F., Testar, X., Palacin, M. & Zorzano, A. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J Biol Chem 271, 19146-19151 (1996).
34Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol Rev 91, 1447-1531, doi:10.1152/physrev.00031.2010 (2011).
35Lee, K. Y. et al. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun 6, 8054, doi:10.1038/ncomms9054 (2015).
36Brown, D. M., Parr, T. & Brameld, J. M. Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J Muscle Res Cell Motil 32, 383-390, doi:10.1007/s10974-011-9267-4 (2012).
37Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A. & Rudnicki, M. A. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144, 631-643 (1999).
38Yang, Z. J. et al. p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 22, 560-573, doi:10.1038/cdd.2014.189 (2015).
39Sambasivan, R. et al. The small chromatin-binding protein p8 coordinates the association of anti-proliferative and pro-myogenic proteins at the myogenin promoter. J Cell Sci 122, 3481-3491, doi:10.1242/jcs.048678 (2009).
40Wei, Q. & Paterson, B. M. Regulation of MyoD function in the dividing myoblast. FEBS Lett 490, 171-178 (2001).
41Ohkawa, Y. et al. Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem 282, 6564-6570, doi:10.1074/jbc.M608898200 (2007).
42Potthoff, M. J. & Olson, E. N. MEF2: a central regulator of diverse developmental programs. Development 134, 4131-4140, doi:10.1242/dev.008367 (2007).
43Yokoi, H. & Yanagita, M. Decrease of muscle volume in chronic kidney disease: the role of mitochondria in skeletal muscle. Kidney Int 85, 1258-1260, doi:10.1038/ki.2013.539 (2014).
44Lee, W. C., Li, L. C., Chen, J. B. & Chang, H. W. Indoxyl sulfate-induced oxidative stress, mitochondrial dysfunction, and impaired biogenesis are partly protected by vitamin C and N-acetylcysteine. ScientificWorldJournal 2015, 620826, doi:10.1155/2015/620826 (2015).
45Mozar, A. et al. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant 27, 2176-2181, doi:10.1093/ndt/gfr647 (2012).
46Mozar, A. et al. Uremic toxin indoxyl sulfate inhibits human vascular smooth muscle cell proliferation. Ther Apher Dial 15, 135-139, doi:10.1111/j.1744-9987.2010.00885.x (2011).
47Kawakami, T. et al. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am J Physiol Renal Physiol 299, F568-576, doi:10.1152/ajprenal.00659.2009 (2010).
48Muteliefu, G., Enomoto, A. & Niwa, T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J Ren Nutr 19, 29-32, doi:10.1053/j.jrn.2008.10.014 (2009).
49Kim, Y. H., Kwak, K. A., Gil, H. W., Song, H. Y. & Hong, S. Y. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol Toxicol 14, 60, doi:10.1186/2050-6511-14-60 (2013).
50Wang, W. J., Cheng, M. H., Sun, M. F., Hsu, S. F. & Weng, C. S. Indoxyl sulfate induces renin release and apoptosis of kidney mesangial cells. J Toxicol Sci 39, 637-643 (2014).
51Niwa, T. & Shimizu, H. Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr 22, 102-106, doi:10.1053/j.jrn.2011.10.032 (2012).
52van den Eijnde, S. M. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci 114, 3631-3642 (2001).
53Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63, 1934-1943, doi:10.1046/j.1523-1755.2003.00924.x (2003).
54Bentzinger, C. F., Wang, Y. X. & Rudnicki, M. A. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a008342 (2012).
55Burks, T. N. & Cohn, R. D. Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle 1, 19, doi:10.1186/2044-5040-1-19 (2011).
56Sartori, R., Gregorevic, P. & Sandri, M. TGFbeta and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25, 464-471, doi:10.1016/j.tem.2014.06.002 (2014).
57Furutani, Y., Umemoto, T., Murakami, M., Matsui, T. & Funaba, M. Role of endogenous TGF-beta family in myogenic differentiation of C2C12 cells. J Cell Biochem 112, 614-624, doi:10.1002/jcb.22953 (2011).
58Liu, D., Black, B. L. & Derynck, R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15, 2950-2966, doi:10.1101/gad.925901 (2001).
59Elkina, Y., von Haehling, S., Anker, S. D. & Springer, J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2, 143-151, doi:10.1007/s13539-011-0035-5 (2011).
60Moon, S. J., Kim, T. H., Yoon, S. Y., Chung, J. H. & Hwang, H. J. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. PLoS One 10, e0130740, doi:10.1371/journal.pone.0130740 (2015).
61Wang, W. et al. The Effects of Indoxyl Sulfate on Human Umbilical Cord-Derived Mesenchymal Stem Cells In Vitro. Cell Physiol Biochem 38, 401-414, doi:10.1159/000438639 (2016).
62Hong, F. et al. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J 16, 1633-1635, doi:10.1096/fj.02-0060fje (2002).
63Fujio, Y. et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19, 5073-5082 (1999).
64Xu, Q. & Wu, Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275, 36750-36757, doi:10.1074/jbc.M005030200 (2000).
65Langley, B. et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277, 49831-49840, doi:10.1074/jbc.M204291200 (2002).
66Zhu, S., Goldschmidt-Clermont, P. J. & Dong, C. Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability. Circ Res 94, 617-625, doi:10.1161/01.RES.0000118599.25944.D5 (2004).
67Wang, X. H. & Mitch, W. E. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10, 504-516, doi:10.1038/nrneph.2014.112 (2014).
68Rajan, V. R. & Mitch, W. E. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol 23, 527-535, doi:10.1007/s00467-007-0594-z (2008).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊