|
Alves, M. de C., Carvalheira, J. B., Módulo, C. M., & Rocha, E. M. (2008). Tear film and ocular surface changes in diabetes mellitus. Arquivos Brasileiros de Oftalmologia, 71(6), 96–103. Asad-ur-Rehman, Wijesekara R.G, S., Nomura, N., Sato, S., & Matsumura, M. (2008). Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1, 3-propanediol production by Clostridium butyricum. Journal of Chemical Technology & Biotechnology, 83(7), 1072–1080. Ávila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & Pascual-Teresa, S. de. (2009). Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453–1461. Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718–15723. Belenguer, A., Duncan, S. H., Calder, A. G., Holtrop, G., Louis, P., Lobley, G. E., & Flint, H. J. (2006). Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology, 72(5), 3593–3599. Boden, G. (2011). 45Obesity, insulin resistance and free fatty acids. Current Opinion in Endocrinology, Diabetes, and Obesity, 18(2), 139. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481. Chavez, J. A., & Summers, S. A. (2003). Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Archives of Biochemistry and Biophysics, 419(2), 101–109. Chen, S.-C., Chen, P.-Y., Wu, Y.-L., Chen, C.-W., Chen, H.-W., Lii, C.-K., Liu, K.-L. (2016). Long-chain polyunsaturated fatty acids amend palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes. Food Funct., 7(1), 270–278. Chiu, Y.-H., Lin, S.-L., Ou, C.-C., Lu, Y.-C., Huang, H.-Y., & Lin, M.-Y. (2013). Anti-inflammatory effect of lactobacilli bacteria on HepG2 cells is through cross-regulation of TLR4 and NOD2 signalling. Journal of Functional Foods, 5(2), 820–828. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., … Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science, 292(5522), 1728–1731. Clô, C., Caldarera, C. M., Tantini, B., Benalal, D., & Bachrach, U. (1979). Polyamines and cellular adenosine 3′: 5′-cyclic monophosphate. Biochemical Journal, 182(3), 641–649. Cnop, M., Foufelle, F., & Velloso, L. A. (2012). Endoplasmic reticulum stress, obesity and diabetes. Trends in Molecular Medicine, 18(1), 59–68. Coakley MR, R. P. R. (2003). Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. Journal of Applied Microbiology, 94(1), 138–45. Colin, T., Bories, A., Lavigne, C., & Moulin, G. (2001). Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Current Microbiology, 43(4), 238–243. De Baere, S., Eeckhaut, V., Steppe, M., De Maesschalck, C., De Backer, P., Van Immerseel, F., & Croubels, S. (2013). Development of a HPLC–UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. Journal of Pharmaceutical and Biomedical Analysis, 80, 107–115. DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(suppl_2), S157–S163. Delzenne, N. M., & Cani, P. D. (2011). Gut microbiota and the pathogenesis of insulin resistance. Current Diabetes Reports, 11(3), 154–159. Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human Feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70(10), 5810–5817. Farese, R. V., Sajan, M. P., & Standaert, M. L. (2005). Insulin-sensitive protein kinases (Atypical Protein Kinase C and Protein Kinase B/Akt): actions and defects in obesity and type II diabetes. Experimental Biology and Medicine, 230(9), 593–605. Fukuda, M., Takagi, N., Kobayashi, M., & Tsuzuki, K. (2012). Effects of soy yogurt on intestinal and plasma polyamine levels in adult rats. Food Science and Technology Research, 18(1), 115–118. Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. Govers, R., Coster, A. C. F., & James, D. E. (2004). Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Molecular and Cellular Biology, 24(14), 6456–6466. Group, N. D. D., & others. (1979). Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes, 28(12), 1039–1057. Guerra, G. P., Mello, C. F., Bochi, G. V., Pazini, A. M., Rosa, M. M., Ferreira, J., & Rubin, M. A. (2012a). Spermidine-induced improvement of memory involves a cross-talk between protein kinases C and A. Journal of Neurochemistry, 122(2), 363–373. Guerra, G. P., Mello, C. F., Bochi, G. V., Pazini, A. M., Rosa, M. M., Ferreira, J., & Hamana, K., Akiba, T., Uchino, F., & Matsuzaki, S. (1989). Distribution of spermine in bacilli and lactic acid bacteria. Canadian Journal of Microbiology, 35(4), 450–455. Heimann, E., Nyman, M., & Degerman, E. (2015). Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 4(2), 81–88. Henriksen, E. J., Teachey, M. K., Taylor, Z. C., Jacob, S., Ptock, A., Krämer, K., & Hasselwander, O. (2003). Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. American Journal of Physiology - Endocrinology and Metabolism, 285(1), E98–E105. Henríquez-Aedo, K., Durán, D., Garcia, A., Hengst, M. B., & Aranda, M. (2016). Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of chilean red wines. LWT - Food Science and Technology, 68, 183–189. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867. Huang, C.-C., Huang, W.-C., Hou, C.-W., Chi, Y.-W., & Huang, H.-Y. (2014). Effect of black soybean koji extract on glucose utilization and adipocyte differentiation in 3T3-L1 Cells. International Journal of Molecular Sciences, 15(5), 8280–8292. Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell Metabolism, 5(4), 237–252. Jell, J., Merali, S., Hensen, M. L., Mazurchuk, R., Spernyak, J. A., Diegelman, P., Porter, C. W. (2007). Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-coA. Journal of Biological Chemistry, 282(11), 8404–8413. Karylowski, O., Zeigerer, A., Cohen, A., & McGraw, T. E. (2004). GLUT4 is retained by an intracellular cycle of vesicle formation and fusion with endosomes. Molecular Biology of the Cell, 15(2), 870–882. Kaul, K., Tarr, J. M., Ahmad, S. I., Kohner, E. M., & Chibber, R. (2013). Introduction to diabetes mellitus. In Diabetes (p. 1-11) Kim, B., Byun, B. Y., & Mah, J.-H. (2012). Biogenic amine formation and bacterial contribution in Natto products. Food Chemistry, 135(3), 2005–2011. Kim, S.-H., Huh, C.-S., Choi, I.-D., Jeong, J.-W., Ku, H.-K., Ra, J.-H., Ahn, Y.-T. (2014). The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. Journal of Applied Microbiology, 117(3), 834–845. Kim, S.-W., Park, K.-Y., Kim, B., Kim, E., & Hyun, C.-K. (2013). Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 431(2), 258–263. Kishino, S., Takeuchi, M., Park, S.-B., Hirata, A., Kitamura, N., Kunisawa, J., Ogawa, J. (2013). Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences, 110(44), 17808–17813. Lawson, M. A., & Purslow, P. P. (2000). Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific. Cells Tissues Organs, 167(2–3), 130–137. Lê, K.-A., Li, Y., Xu, X., Yang, W., Liu, T., Zhao, X., Hui, H. (2013). Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population. Frontiers in Physiology, 3. Lin, H. V., Frassetto, A., Kowalik Jr, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., … Marsh, D. J. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7(4), e35240. Lin, P. W., Myers, L. E. S., Ray, L., Song, S.-C., Nasr, T. R., Berardinelli, A. J., … Neish, A. S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radical Biology and Medicine, 47(8), 1205–1211. Ling, Z., Liu, X., Cheng, Y., Luo, Y., Yuan, L., Li, L., Xiang, C. (2015). Clostridium butyricum combined with Bifidobacterium infantis probiotic mixture restores fecal microbiota and attenuates systemic inflammation in mice with antibiotic-associated diarrhea. BioMed Research International, 2015, e582048. Liu, X., Li, H., Chen, Y., & Cao, Y. (2012). Method for screening of bacterial strains biosynthesizing specific conjugated linoleic acid isomers. Journal of Agricultural and Food Chemistry, 60(38), 9705–9710. Lockwood, D. H., Lipsky, J. J., Meronk, F., & East, L. E. (1971). Actions of polyamines on lipid and glucose metabolism of fat cells. Biochemical and Biophysical Research Communications, 44(3), 600–607. Lorencová, E., Buňková, L., Matoulková, D., Dráb, V., Pleva, P., Kubáň, V., & Buňka, F. (2012). Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer: BA production by LAB from dairy and beer. International Journal of Food Science & Technology, 47(10), 2086–2091. Luković, N., Knežević-Jugović, Z., & Bezbradica, D. (2011). Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives. Alternative Fuel, 1. Malhotra M, K. I. (2015). Screening and in-vitro analysis of Lactobacillus reuteri strains for short chain fatty acids production, stability and therapeutic potentials in colorectal cancer. Journal of Bioequivalence & Bioavailability, 7(1). Martin, B. C., Warram, J. H., Krolewski, A. S., Soeldner, J. S., Kahn, C. R., Martin, B. C., & Bergman, R. N. (1992). Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. The Lancet, 340(8825), 925–929. Martins, A. R., Nachbar, R. T., Gorjao, R., Vinolo, M. A., Festuccia, W. T., Lambertucci, R. H., … Hirabara, S. M. (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis, 11(30), 1–11. Matsumoto, M., & Benno, Y. (2006). Anti-inflammatory metabolite production in the gut from the consumption of probiotic yogurt containing Bifidobacterium animalis subsp. lactis LKM512. Bioscience, Biotechnology, and Biochemistry, 70(6), 1287–1292. Matsumoto, M., & Benno, Y. (2007). The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiology and Immunology, 51(1), 25–35. Matsumoto, M., Ohishi, H., & Benno, Y. (2001). Impact of LKM512 yogurt on improvement of intestinal environment of the elderly. FEMS Immunology & Medical Microbiology, 31(3), 181–186. Mellitus, D. (2005). Diagnosis and classification of diabetes mellitus. Diabetes Care, 28, S37. Minois, N. (2014). Molecular basis of the “anti-aging”effect of spermidine and other natural polyamines-a mini-review. Gerontology, 60(4), 319–326. Mohankumar, S. K., Taylor, C. G., Siemens, L., & Zahradka, P. (2012). Acute exposure of L6 myotubes to cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers stimulates glucose uptake by modulating Ca2+/calmodulin-dependent protein kinase II. The International Journal of Biochemistry & Cell Biology, 44(8), 1321–1330. Mohankumar, S. K., Taylor, C. G., Siemens, L., & Zahradka, P. (2013). Activation of phosphatidylinositol-3 kinase, AMP-activated kinase and Akt substrate-160 kDa by trans-10, cis-12 conjugated linoleic acid mediates skeletal muscle glucose uptake. The Journal of Nutritional Biochemistry, 24(2), 445–456. Moloney, F., Toomey, S., Noone, E., Nugent, A., Allan, B., Loscher, C. E., & Roche, H. M. (2007). Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue. Diabetes, 56(3), 574–582. Moreno-Arribas, M. V., Polo, M. C., Jorganes, F., & Muñoz, R. (2003). Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 84(1), 117–123. Nikita Lomis, S. W. (2015). The gut microflora and its metabolites regulate the molecular crosstalk between diabetes and neurodegeneration. Journal of Diabetes & Metabolism, 6(8). Nishibori, N., Fujihara, S., & Akatuki, T. (2007). Amounts of polyamines in foods in Japan and intake by Japanese. Food Chemistry, 100(2), 491–497. Nishiumi, S., & Ashida, H. (2007). Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Bioscience, Biotechnology, and Biochemistry, 71(9), 2343–2346. Noto, A., Zahradka, P., Ryz, N. R., Yurkova, N., Xie, X., & Taylor, C. G. (2007). Dietary conjugated linoleic acid preserves pancreatic function and reduces inflammatory markers in obese, insulin-resistant rats. Metabolism, 56(1), 142–151. O’Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P., & Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189–205. Ogawa, J., Kishino, S., Ando, A., Sugimoto, S., Mihara, K., & Shimizu, S. (2005). Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering, 100(4), 355–364. Oh, D.-K., Hong, G.-H., Lee, Y., Min, S., Sin, H.-S., & Cho, S. K. (2003). Production of conjugated linoleic acid by isolated Bifidobacterium strains. World Journal of Microbiology and Biotechnology, 19(9), 907–912. Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in Cellular and Infection Microbiology, 2. Pirinen, E., Kuulasmaa, T., Pietilä, M., Heikkinen, S., Tusa, M., Itkonen, P., Laakso, M. (2007). Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Molecular and Cellular Biology, 27(13), 4953–4967. Qin, H., Liu, Y., Lu, N., Li, Y., & Sun, C.-H. (2009a). Cis-9,trans-11-conjugated linoleic acid activates AMP-Activated Protein Kinase in attenuation of insulin resistance in C2C12 myotubes. Journal of Agricultural and Food Chemistry, 57(10), 4452–4458. Qin, H., Liu, Y., Lu, N., Li, Y., & Sun, C.-H. (2009b). Cis-9, trans-11-conjugated linoleic acid activates AMP-Activated Protein Kinase in attenuation of insulin resistance in C2C12 myotubes. Journal of Agricultural and Food Chemistry, 57(10), 4452–4458. Rajkumar, H., Mahmood, N., Kumar, M., Varikuti, S. R., Challa, H. R., & Myakala, S. P. (2014). Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. Mediators of Inflammation, 2014, 1–8. Rodríguez de Olmos, A., Bru, E., & Garro, M. S. (2015). Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. International Journal of Food Microbiology, 196, 16–23. Rose, A. J., & Richter, E. A. (2005). Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology, 20(4), 260–270. Sadasivan, S. K., Vasamsetti, B., Singh, J., Marikunte, V. V., Oommen, A. M., Jagannath, M. R., & Pralhada Rao, R. (2014). Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice. European Journal of Pharmacology, 729, 94–99. Sawada, K., Kawabata, K., Yamashita, T., Kawasaki, K., Yamamoto, N., & Ashida, H. (2012). Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells. Lipids Health Dis, 11(1), 36. Sekowska, A., Bertin, P., & Danchin, A. (1998). Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Molecular Microbiology, 29(3), 851–858. Tabor, C. W., & Tabor, H. (1985). Polyamines in microorganisms. Microbiological Reviews, 49(1), 81. Tsao, T.-S., Li, J., Chang, K. S., Stenbit, A. E., Galuska, D., Anderson, J. E. (2001). Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. The FASEB Journal, 15(6), 958–969. Tilg, H., & Moschen, A. R. (2014). Microbiota and diabetes: an evolving relationship. Gut, 63(9), 1513–1521. Tsuda, Y., Yoshimatsu, Y., Aoki, H., Nakamura, K., Irie, M., Fukuda, K., Suzuki, Y. (2007). Clinical effectiveness of probiotics therapy (BIO-THREE) in patients with ulcerative colitis refractory to conventional therapy. Scandinavian Journal of Gastroenterology, 42(11), 1306–1311. Turner, N., Cooney, G. J., Kraegen, E. W., & Bruce, C. R. (2014). Fatty acid metabolism, energy expenditure and insulin resistance in muscle. Journal of Endocrinology, 220(2), T61–T79. Valdés-Santiago, L., & Ruiz-Herrera, J. (2014). Stress and polyamine metabolism in fungi. Frontiers in Chemistry, 1. Van Nieuwenhove, C. P., Oliszewski, R., González, S. N., & Pérez Chaia, A. B. (2007). Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Letters in Applied Microbiology, 44(5), 467–474. Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R. S., Bartelsman, J. F. W. M., Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4), 913–916.e7. Wang, H., Sun, R.-Q., Zeng, X.-Y., Zhou, X., Li, S., Jo, E., Ye, J.-M. (2014). Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology, 156(1), 169–181. Woods, A., Dickerson, K., Heath, R., Hong, S.-P., Momcilovic, M., Johnstone, S. R., … Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism, 2(1), 21–33. Xie, S.-S., Wu, H.-J., Zang, H.-Y., Wu, L.-M., Zhu, Q.-Q., & Gao, X.-W. (2014). Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Molecular Plant-Microbe Interactions: MPMI, 27(7), 655–663. Yadav, H., Lee, J.-H., Lloyd, J., Walter, P., & Rane, S. G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry, 288(35), 25088–25097. Yamamoto, N., Ueda, M., Sato, T., Kawasaki, K., Sawada, K., Kawabata, K., & Ashida, H. (2011). Measurement of glucose uptake in cultured cells. Current Protocols in Pharmacology, 12-14. Yamamoto, N., Sato, T., Kawasaki, K., Murosaki, S., & Yamamoto, Y. (2006). A nonradioisotope, enzymatic assay for 2-deoxyglucose uptake in L6 skeletal muscle cells cultured in a 96-well microplate. Analytical Biochemistry, 351(1), 139–145. Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., Tsuji, H. (2007). Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry, 71(5), 1236–1243. Yang, C. M., Cao, G. T., Ferket, P. R., Liu, T. T., Zhou, L., Zhang, L., … Chen, A. G. (2012). Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poultry Science, 91(9), 2121–2129. Yang, J., Ding, X., Qin, Y., & Zeng, Y. (2014). Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd. Journal of Agricultural and Food Chemistry, 62(31), 7947–7954. Zhang, M., Caragine, T., Wang, H., Cohen, P. S., Botchkina, G., Soda, K., others. (1997). Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. The Journal of Experimental Medicine, 185(10), 1759–1768. Zhang, S., Shi, Y., Zhang, S., Shang, W., Gao, X., & Wang, H. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41, 1–6. Zimbardi, A. L. R. L., Sehn, C., Meleiro, L. P., Souza, F. H. M., Masui, D. C. (2013). Optimization of β-glucosidase, β-xylosidase and xylanase production by colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. International Journal of Molecular Sciences, 14(2), 2875–2902.
|