跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱瀛輝
研究生(外文):Ying-Hui Chiu
論文名稱:南沙群島鄭和環礁北邊海域的地殼特徵
論文名稱(外文):Crustal Characters in the Northern Offshore Area of the Chenho Reefs, Southern South China Sea
指導教授:劉家瑄劉家瑄引用關係
指導教授(外文):Char-Shine Liu
口試委員:徐春田顏宏元葉一慶
口試委員(外文):Chuen-Tien ShyuHorng-Yuan YenYi-Ching Yeh
口試日期:2016-01-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:鄭和環礁反射震測重力模型磁力模型
外文關鍵詞:Chenho Reefsreflection seismicsgravity modelmagnetic model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用ORI-1068航次收集來的一條約217公里長的多頻道反射震測剖面,搭配重力與磁力資料等,來探討南海南沙群島鄭和環礁北邊海域的地殼特徵。震測剖面位於鄭和-道明海槽之中,由西南到東北大致分成海山區、太平島北邊海域以及火成岩侵入體區。海山及火成岩侵入體侵入體擾動海床沉積物。另外,在太平島北邊海域觀察到碳酸鹽平台邊緣強振幅與弱振幅反射重複交互出現的反射特徵。衛星重力反演的Moho深度大約在13-19公里之間,表現出拉薄的大陸地殼特徵,重力模型的下部地殼模擬出2.97 g/cm3的高密度層。磁力異常在海山及侵入體區呈現80-160 nT的高值,在太平島北邊海域為-35到-180 nT的低值。磁力模型在海山區以及火成岩侵入體區也顯現較高的磁感率,在太平島北邊海域呈現低磁感率。
地殼下部模擬出高密度層,可能是底侵作用所造成的。再者參考ODP Site 1143鑽井資料認為火山及火成岩侵入體不是在張裂時期生成的,也沒有發現到同張裂火山流造成的向海傾斜的反射特徵(Seaward Dipping Reflector;SDR)。本研究認為鄭和環礁區域不能以二分法區分為火山型或岩漿缺乏型邊緣,而是屬於中間型的被動大陸邊緣。
另外鄭和環礁構造走向呈東北-西南向,與南海西南次海盆張裂方向垂直,再加上太平島北邊海域表現為花崗岩的磁感率,以及沒觀察到類似火山及火成岩體的反射特徵,本研究認為鄭和環礁可能是建立在張裂時期造成的大陸地殼斷塊(fault block)之上,而非建立在火山的高區之上。


In this study, we analyzed multichannel reflection seismic profile, gravity and magnetic data along a 217 km long line, to discuss the crustal characters in the northern offshore area of the Chenho Reefs in southern South China Sea. The roughly SW-NE trending seismic profile lies in the Chenho-Daoming trough north of the Chenho Reefs. We divide the seismic profile into three sections from southwest to northeast: seamount area, northern offshore of the Taiping Island and igneous intrusion area. All the seamounts and igneous intrusions disturbed the shallow sediments beneath the seafloor. The seismic reflection images in the northern offshore of the Taiping Island are characterized by several sets of strong reflections with amplitudes dropping off westward. These reflections show reciprocal stacking patterns which are typical seismic expressions at the edge of carbonate platforms. The Moho depth is about 13-19 km by inversion of satellite gravity data, suggesting a thinned continental crust. Gravity modeling reveals that a high density layer(2.97 g/cm3)lies in the lower crust. The magnetic anomalies in the seamount area and igneous intrusions area show high values about 80 to 160 nT, whereas -35 to -180 nT in the northern offshore of the Taiping Island. Magnetic modeling also reveals that the magnetic susceptibilities of the seamount area and igneous intrusion area are higher than that of the northern offshore area of the Taiping Island.
In this study, a high density layer which may be caused by underplating is simulated in the lower crust. Referring to ODP Site 1143, we suggest that the volcanoes and the igneous intrusions were not formed during the rifting but were developed after the rifting stage. In this study, we propose that an intermediate mode of rifting to fit characteristics of the Chenho Reefs, which is different from either volcanic margin or magma-poor margin.
The structural trend of the Chenho Reefs axis is perpendicular to the rifting axis of the Southwest Subbasin in the South China Sea. Moreover, the magnetic susceptibility of the crustal material in the northern offshore area of the Taiping Islands suggest a granite basement. The seismic features of seamounts and igneous intrusions do not appear in the northern offshore area of the Chenho Reefs. We propose that the basement beneath the Chenho Reefs should be a continental fault block caused by the rifting of the South China Sea, rather than volcanic seamounts.


致謝 i
摘要 iii
英文摘要 iv
目錄 vi
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目標 1
1-3 研究區域與方法 3
第二章 區域地質背景 7
2-1 南海地理位置與構造事件 7
2-2 南海南部大陸邊緣南沙群島區域的地殼構造 13
第三章 資料來源與處理 18
3-1 震測資料 18
3-2 磁力資料 22
3-3 重力資料 33
第四章 資料解釋 40
4-1 震測資料解釋 40
4-2 重力模擬剖面 43
4-3 磁力模擬剖面 44
第五章 討論 60
5-1 南沙群島各測線的重力模型 60
5-2 鄭和環礁區域的大陸邊緣類型與地殼構造特徵 61
5-3 鄭和環礁基盤岩之特徵 62
第六章 結論 67
參考文獻 69



Barckhausen, U., & Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited. Continent-ocean interactions within East Asian marginal seas, 121-125.
Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B4), 6299-6328.
Braitenberg, C., Wienecke, S., & Wang, Y. (2006). Basement structures from satellite‐derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B5).
Clift, P., Lee, G. H., Anh Duc, N., Barckhausen, U., Van Long, H., & Zhen, S. (2008). Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27(3).
Cooper, G. R. J. (1998). Geomodel for Windows, 2.5-D interactive magnetic and gravity data modeling and inversion.
Cullen, A., Reemst, P., Henstra, G., Gozzard, S., & Ray, A. (2010). Rifting of the South China Sea: new perspectives. Petroleum Geoscience, 16(3), 273-282.
Ding, W., Schnabel, M., Franke, D., Ruan, A., & Wu, Z. (2012). Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma‐poor Rifting from a Wide‐angle Seismic Profile. Acta Geologica Sinica (English Edition), 86(4), 854-866.
Ding, W., & Li, J. (2015). Conjugate margin pattern of the Southwest Sub‐basin, South China Sea: insights from deformation structures in the continent‐ocean transition zone. Geological Journal.
Franke, D. (2013). Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Marine and Petroleum geology, 43, 63-87.
Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., & Jia, L. (2015). The continent–ocean transition at the mid-northern margin of the South China Sea.Tectonophysics.
Geological Survey of Japan and Coordinating Committee for Coastal and Offshore Geoscience Programmes in East and Southeast Asia (CCOP). (1996). Magnetic anomaly map of East Asia 1:4,000,000 CD-ROMVersion, Digital Geoscience Map 2 (P-1).
Gong, S. Y., Mii, H. S., Wei, K. Y., Horng, C. S., You, C. F., Huang, F. W., Chi, W. R., Yui, T. F., Torng, P. K., Huang, S. T., Wang, S. W., Wu, J. C., & Yang, K. M. (2005). Dry climate near the Western Pacific warm pool: Pleistocene caliches of the Nansha Islands, South China sea.Palaeogeography, Palaeoclimatology, Palaeoecology, 226(3), 205-213.
Gómez-Ortiz, D., & Agarwal, B. N. (2005). 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg''s algorithm. Computers & geosciences, 31(4), 513-520.
Hall, R., & Nichols, G. (2002). Cenozoic sedimentation and tectonics in Borneo: climatic influences on orogenesis. Geological Society, London, Special Publications, 191(1), 5-22.
Hinz, K., & Schlüter, H. U. (1985). Geology of the Dangerous Grounds, South China Sea, and the continental margin off southwest Palawan: results of Sonne cruises SO-23 and SO-27. Energy, 10(3), 297-315.
Holloway, N. H. (1982). North Palawan Block, Philippines--its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9), 1355-1383.
Hsu, S. K., Yeh, Y. C., Doo, W. B., & Tsai, C. H. (2004). New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1-2), 29-44.
Huang, H. B., Qiu, X. L., Xu, H. L., Hao, T. Y., Xu, Y., & Li, J. B. (2011). Preliminary Results of Earthquake Observations and Onshore‐Offshore Seismic Experiments on Islands of the Xisha Block, South China Sea. Chinese Journal of Geophysics, 54(6), 1045-1055.
Hutchison, C. S. (2004). Marginal basin evolution: the southern South China Sea. Marine and Petroleum Geology, 21(9), 1129-1148.
Hutchison, C. S. (2010). The north-west Borneo trough. Marine Geology, 271(1), 32-43.
Hutchison, C. S., & Vijayan, V. R. (2010). What are the Spratly islands?. Journal of Asian Earth Sciences, 39(5), 371-385.
Lester, R., Van Avendonk, H. J. A., McIntosh, K., Lavier, L., Liu, C. S., Wang, T. K., & Wu, F. (2014). Rifting and magmatism in the northeastern South China Sea from wide‐angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119(3), 2305-2323.
Li, C. F., Zhou, Z., Li, J., Hao, H., & Geng, J. (2007). Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Researches, 28(1), 59-79.
Lowrie, W. (2007). Fundamentals of geophysics. Cambridge University Press.
Nathan, S. A., & Leckie, R. M. (2003). Miocene planktonic foraminiferal biostratigraphy of sites 1143 and 1146, ODP Leg 184, South China Sea. InProc. ODP, Sci. Results (Vol. 184, pp. 1-43).
Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Bochu, Y., Zeng, W., & Chen, Y. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B11), 22407-22433.
Oldenburg, D. W. (1974). The inversion and interpretation of gravity anomalies. Geophysics, 39(4), 526-536.
Pichot, T., Delescluse, M., Chamot-Rooke, N., Pubellier, M., Qiu, Y., Meresse, F., Sun, G., Savva, D., Wong, K. P., Watremez, L., & Auxiètre, J. L. (2014). Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data. Marine and Petroleum Geology, 58, 627-643.
Parker, R. L. (1973). The rapid calculation of potential anomalies. Geophys. JR Astron. Soc, 31(4), 447-455.
Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K., & Flueh, E. R. (2001). Crustal structure across the Xisha trough, northwestern South China Sea. Tectonophysics, 341(1), 179-193.
Qiu, X. L., Zhao, M. H., Ao, W., Lü, C. C., Hao, T. Y., You, Q. Y., Ruan, A. G. & Li, J. B. (2011). OBS Survey and Crustal Structure of the SW Sub‐Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(6), 1009-1021.
Ru, K., & Pigott, J. D. (1986). Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70(9), 1136-1155.
Savva, D., Pubellier, M., Franke, D., Chamot-Rooke, N., Meresse, F., Steuer, S., & Auxietre, J. L. (2014). Different expressions of rifting on the South China Sea margins. Marine and Petroleum Geology, 58, 579-598.
Schlager, W. (2007). Sequence Stratigraphy of C and M Factories.
Song, T., & Li, C. F. (2015). Rifting to drifting transition of the Southwest Subbasin of the South China Sea. Marine Geophysical Research, 1-19.
Tapponnier, P., & Molnar, P. (1977). Active faulting and tectonics in China. Journal of Geophysical Research, 82(20), 2905-2930.
Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12), 611-616.
Tapponnier, P., Lacassin, R., Leloup, P. H., Schärer, U., Zhong, D., Wu, H., Liu, X., Ji, S., Zhang, L., & Zhong, J. (1990). The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China. 431-437.
Taylor, B., & Hayes, D. E. (1980). The tectonic evolution of the South China Basin. The tectonic and geologic evolution of Southeast Asian seas and islands, 89-104.
Taylor, B., & Hayes, D. E. (1983). Origin and history of the South China Sea basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 23-56.
Wang, T. K., Chen, M. K., Lee, C. S., & Xia, K. (2006). Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3), 237-254.
Wie, X. D., Ruan, A. G., Zhao, M. H., Qiu, X. L., Li, J. B., Zhu, J. J., Wu, Z. L., & Ding, W. W. (2011). A Wide‐Angle Obs Profile Across the Dongsha Uplift and Chaoshan Depression in the Mid‐Northern South China Sea. Chinese Journal of Geophysics, 54(6), 1149-1160.
Yao, B., Zeng, W., Hayes, D. E., & Spangler, S. (1994). The geological memoir of South China Sea surveyed jointly by China and USA. China University of Geosciences Press, Wuhan, 1204.
Yan, P., Zhou, D., & Liu, Z. (2001). A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1-21.
Yan, P., & Liu, H. (2004). Tectonic-stratigraphic division and blind fold structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 24(3), 337-348.
Yan, P., Deng, H., Liu, H., Zhang, Z., & Jiang, Y. (2006). The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647-659.
Zhang, H., Marangoni, Y. R., Hu, X., & Zuo, R. (2014). NTRTP: A new reduction to the pole method at low latitudes via a nonlinear thresholding. Journal of Applied Geophysics, 111, 220-227.
Zhou, D., Ru, K., & Chen, H. Z. (1995). Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1), 161-177.
程子華、丁巍偉、董崇志、方銀霞、唐勇,2014。南海南部地殼結構的重力模擬及伸展模式探討。高校地質學報,20(2),239-248.
莊松棱,2010。東沙島以南大陸邊緣火成岩體時空分布之探討。國立台灣大學海洋研究所碩士論文。共64頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top