跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李允文
研究生(外文):Yun-Wen Li
論文名稱:利用拖曳式發收器於淺海環境聲測流研究
論文名稱(外文):Shallow-Water Acoustic Mapping of Ocean Currents Using Towed Transceivers
指導教授:黃千芬黃千芬引用關係
口試委員:劉金源郭振華黃清哲谷口直和
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:73
中文關鍵詞:水聲層析法聲學監測都普勒效應來回走時差
外文關鍵詞:Ocean acoustic tomographyacoustic monitoringDoppler effectdifferential travel time
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study uses four moored {acoustic transceivers (a device consisting of a source and a receiver)} along with one towed by a ship to demonstrate the acoustic mapping of ocean currents with the mobile station in a shallow-water environment.
The basic principle of the acoustic mapping for currents is that the difference in the travel times (DTT) of oppositely traveling acoustic signals is proportional to the integrated current velocity along the acoustic ray path. Thus the currents can be estimated with the DTT data.
When the towed transceiver is incorporated,
the acoustic signal is Doppler-distorted and the DTTs are affected due to the relative instrument motion.
Since the transmitted signal, $m$-sequence, is highly sensitive to Doppler,
the method based upon the delay-Doppler ambiguity function can determine the Doppler shift and the arrival patterns simultaneously.
For the estimation of DTT, the conventional approach using the peak-picking method is subject to the uncertainties in identifying and resolving acoustic rays in the shallow-water environment. Hence, this study proposed a method based on the cross-correlation function (CCF) of the reciprocal arrival patterns. Ideally, the DTT could be obtained by the lag time corresponding to the maximum correlation. However, due to the multiple acoustic arrivals the CCF exhibits multiple peaks with similar heights. To address this issue, we utilize the time-evolving CCFs to select appropriate peaks for the determination of DTT. Using the data collected at Sizhiwan Marine Test Field, Kaohsiung, in September of 2015, the current field was estimated. The towed transceiver in the experiment provided additional reciprocal travel-time data for sensing the water volume at many angles and increased the coverage of the mapping area. Besides augmenting the number of DTT data for the current estimate, some of the data from the towed transceiver are used to validate the estimated field. The experiment site is dominated by the semi-diurnal tidal currents with the principal current direction flowing {along the isobaths}. The time evolution of the estimated current agrees well with the shipboard-ADCP measurements, and the spatial variations are observed when the currents change the direction.

致謝 i
中文摘要 ii
Abstract iii
1 Introduction 1
1.1 BackgroundandMotivation ....................... 1
1.2 AConciseSurveyofLiterature ..................... 3
1.3 Objectives................................. 7
1.4 ScopesoftheThesis ........................... 7
2 Theory 8
2.1 Path-Averaged Current Velocity and Differential Travel Time . . . . . 8
2.1.1 Limitation on Sensing the Divergence of the Currents . . . . . 11
2.2 MethodsforCurrentEstimation..................... 12
2.2.1 TemporalEvolution........................ 12
2.2.2 SpatialDistribution........................ 13
2.3 BasicSignal-ProcessingTechniques ................... 14
2.3.1 PulseCompression ........................ 14
2.3.2 Maximum-lengthSequence.................... 16
2.3.3 BinaryPhaseShiftKeyingModulation . . . . . . . . . . . . . 17
2.3.4 Cross-correlationFunction.................... 17
2.4 DopplerSignalProcessing ........................ 18
2.5 Summary ................................. 22
3 Field Experiment 23
3.1 DescriptionoftheExperiment...................... 23
3.2 InstrumentsforAcousticTranmission.................. 26
3.3 HydrographicSurvey........................... 31
3.3.1 CTD................................ 31
3.3.2 ShipboardADCP......................... 34
3.4 Summary ................................. 35
4 Data Analysis 36
4.1 RawData................................. 37
4.2 DopplerProcessing ............................ 37
4.3 SNRCalculation ............................. 40
4.4 Time-evolving Cross-Correlation Function for Reciprocal Arrival Patterns.................................... 41
4.5 DTTEstimation ............................. 45
4.6 Summary ................................. 46
5 Results and Discussion 48
5.1 EigenraySimulations........................... 48
5.2 Description of the Measured Data and Estimated Currents . . . . . . 49
5.3 ValidationoftheEstimatedCurrentField . . . . . . . . . . . . . . . 57
5.4 ErrorAnalysis............................... 58
5.5 Summary ................................. 60
6 Conclusions 61
6.1 Conclusions ................................ 61
6.2 SuggestionsofFurtherDevelopment................... 62
Appendix A 64
Bibliography 70


[1] D. Behringer, T. Birdsall, M. Brown, B. Cornuelle, R. Heinmiller, R. Knox, K. Metzger, W. Munk, J. Spiesberger, R. Spindel, D. Webb, P. Worcester, and C. Wunsch. A demonstration of ocean acoustic tomography. Nature, 299:121– 125, 1982.
[2] Y.-H. Chen, N. Taniguchi, C.-T. Liu, and C.-F. Huang. Acoustic current mea- surement using travel-time method in Bachimen Harbor, Taiwan. In OCEANS 2014 - TAIPEI, pages 1–5, 2014.
[3] B. Cornuelle, W. Munk, and P. Worcester. Ocean acoustic tomography from ships. J. Geophys. Res.: Oceans, 94(C5):6232–6250, 1989.
[4] Cypress Semiconductor. PSoC⃝R 5LP: CY8C58LP family datasheet: Pro- grammable system-on-chip (PSoC⃝R ).
[5] V. A. Del Grosso. New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am., 56(4):1084–1091, 1974.
[6] Y. Doisy, L. Deruaz, S. Beerens, and R. Been. Target Doppler estimation using wideband frequency modulated signals. IEEE Trans. Signal Process., 48(5):1213 –1224, may 2000.
[7] S. Haykin. Communication systems. John Wiley & Sons, 2008.
[8] C.-F. Huang. Moving vehicle tomography using distributed networked under- water sensors. Report for the research program supported by Ministry of Sci- ence and Technology, R. O. C., Institute of Oceanography, National Taiwan University, 2016.
[9] C.-F. Huang, N. Taniguchi, Y.-H. Chen, and J.-Y. Liu. Estimating temperature and current using a pair of transceivers in a harbor environment. J. Acoust. Soc. Am., 140(1):EL137–EL142, 2016.
[10] C.-F. Huang, T. C. Yang, J.-Y. Liu, and J. Schindall. Acoustic mapping of ocean currents using networked distributed sensors. J. Acoust. Soc. Am., 134(3):2090– 2105, 2013.
[11] G. Jourdain and J. P. Henrioux. Use of large bandwidth-duration binary phase shift keying signals in target delay Doppler measurements. J. Acoust. Soc. Am., 90(1):299–309, 1991.
[12] D. S. Ko, H. A. DeFerrari, and P. Malanotte-Rizzoli. Acoustic tomography in the Florida Strait: Temperature, current, and vorticity measurements. J. Geophys. Res.: Oceans, 94(C5):6197–6211, 1989.
[13] T. J. McDougall and P. M. Barker. Getting started with TEOS—10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 2011.
[14] T. J. McDougall, D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker. A global algorithm for estimating Absolute Salinity. Ocean Sci., 8(6):1123– 1134, 2012.
[15] W. Munk, P. Worcester, and C. Wunsch. Ocean acoustic tomography. Cam- bridge University Press, 1995.
[16] W. Munk and C. Wunsch. Ocean acoustic tomography: A scheme for large scale monitoring. Deep-Sea Res., Part A, 26(2):123 – 161, 1979.
[17] W. H. Munk, R. C. Spindel, A. Baggeroer, and T. G. Birdsall. The Heard Island feasibility test. J. Acoust. Soc. Am., 96(4):2330–2342, 1994.
[18] Neptune Sonar Limited. The datasheet of model T235 transducer.
[19] Nortek AS. Aquadopp Profiler brochure.
[20] S. J. Norton. Tomographic reconstruction of 2-D vector fields: Application to flow imaging. Geophys. J. Int., 97(1):161–168, 1989.
[21] Ocean Data Bank of the Ministry of Science and Technology, Republic of China. Bathymetric data around Taiwan. http://www.odb.ntu.edu.tw/.
[22] M. B. Porter. Acoustics toolbox. http://oalib.hlsresearch.com/.
[23] M. B. Porter and H. P. Bucker. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am., 82(4):1349–1359, 1987.
[24] H. Preston-Thomas. The international temperature scale of 1990 (ITS-90). Metrologia, 27(1):3, 1990.
[25] Sea-Bird Electronics. SBE 9plus manual.
[26] N. Taniguchi, C.-F. Huang, A. Kaneko, C.-T. Liu, B. M. Howe, Y.-H. Wang, Y. Yang, J. Lin, X.-H. Zhu, and N. Gohda. Measuring the Kuroshio Current with ocean acoustic tomography. J. Acoust. Soc. Am., 134(4):3272–3281, 2013.
[27] Teledyne RD Instruments. Ocean Surveyor ADCP datasheet.
[28] The Acoustic Mid-Ocean Dynamics Experiment Group. Moving ship tomography in the North Atlantic. Eos Trans. AGU, 75(2):17–23, 1994.
[29] U-blox. NEO-6T / LEA-6T product summary.
[30] UNESCO. The practical salinity scale 1978 and the international equation of state of seawater 1980. Technical Report 36, UNESCO Technical Paper in Marine Science, 1981.
[31] J. Valladares, W. Fennel, and E. Morozov. Replacement of EOS-80 with the International Thermodynamic Equation of Seawater - 2010 (TEOS-10). Deep- Sea Res., Part I, 58(9):978, 2011.
[32] L. G. Weiss. Wavelets and wideband correlation processing. IEEE Signal Proc. Mag., 11(1):13–32, 1994.
[33] E. W. Weisstein. Cross-Correlation. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Cross-Correlation.html.
[34] P. F. Worcester. Reciprocal acoustic transmission in a midocean environment. J. Acoust. Soc. Am., 62(4):895–905, 1977.
[35] M.-H. Xiao. A very shallow water acoustic propagation experiment in the Si-Tzi Marine Test Field. Master thesis, Institute of Undersea Technology, National Sun Yat-Sen University, 2009.
[36] K. Yamaguchi, J. Lin, A. Kaneko, T. Yayamoto, N. Gohda, H.-Q. Nguyen, and H. Zheng. A continuous mapping of tidal current structures in the Kanmon Strait. J. Oceanogr., 61(2):283–294, 2005.
[37] H. Yamoaka, A. Kaneko, J.-H. Park, H. Zheng, N. Gohda, T. Takano, X.- H. Zhu, and Y. Takasugi. Coastal acoustic tomography system and its field application. IEEE J. Oceanic Eng., 27(2):283–295, 2002.
[38] H. Zheng, N. Gohda, H. Noguchi, T. Ito, H. Yamaoka, T. Tamura, Y. Taka- sugi, and A. Kaneko. Reciprocal sound transmission experiment for current measurement in the Seto Inland Sea, Japan. J. Oceanogr., 53:117–127, 1997.
[39] X. H. Zhu, A. Kaneko, Q. Wu, C. Zhang, N. Taniguchi, and N. Gohda. Map- ping tidal current structures in Zhitouyang Bay, China, using coastal acoustic tomography. IEEE J. Oceanic Eng., 38(2):285–296, 2013.
[40] 劉金源,《水中聲學 − 水聲系統之基本原理操作》,國立編譯館,2001。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top