|
Amaral, J.A., Knowles, R., 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiology Letters, 126, 215-220. Anthony, C., 1991. Assimilation of carbon by methylotrophs. Biology of methylotrophs, 79-109. Armstrong, W., 1979. Aeration in higher plants. InAdvances in Botanic Research; Woolhouse, HW, Ed. Academic Press: London, UK. Barnes, R., Goldberg, E., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4, 297-300. Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 325, 184-187. Beasley, K.K., Nanny, M.A., 2012. Potential energy surface for anaerobic oxidation of methane via fumarate addition. Environmental Science & Technology, 46, 8244-8252. Bendix, M., Tornbjerg, T., Brix, H., 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquatic Botany, 49, 75-89. Benz, M., Schink, B., Brune, A., 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Applied and environmental microbiology, 64, 4507-4512. Blazewicz, S.J., Petersen, D.G., Waldrop, M.P., Firestone, M.K., 2012. Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling. J. Geophys. Res.-Biogeosci., 117, 9. Blodau, C., Deppe, M., 2012. Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada. Soil Biology and Biochemistry, 52, 96-98. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jrgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623-626. Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., Van der Werf, G.R., Peylin, P., Brunke, E.G., Carouge, C., Langenfelds, R.L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L.P., Tyler, S.C., White, J., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439-443. Breznak, J.A., 1982. Intestinal microbiota of termites and other xylophagous insects. Annual Reviews in Microbiology, 36, 323-323. Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., Zhuang, Q.L., 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol., 19, 1325-1346. Cervantes, F.J., de Bok, F.A., Duong‐Dac, T., Stams, A.J., Lettinga, G., Field, J.A., 2002. Reduction of humic substances by halorespiring, sulphate‐reducing and methanogenic microorganisms. Environmental Microbiology, 4, 51-57. Chang, T.C., Yang, S.S., 2003. Methane emission from wetlands in Taiwan. Atmospheric Environment, 37, 4551-4558. Chang, Y.H., Cheng, T.W., Lai, W.J., Tsai, W.Y., Sun, C.H., Lin, L.H., Wang, P.L., 2012. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 14, 895-908. Cheng, W., Yagi, K., Sakai, H., Kobayashi, K., 2006. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry, 77, 351-373. Cicerone, R.J., Oremland, R.S., 1988. Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles, 2, 299-327. Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1, 285-292. Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W., Roberts, J., 2011. The methane cycle in ferruginous Lake Matano. Geobiology, 9, 61-78. Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D., 2011. Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 369, 2058-2072. Dorodnikov, M., Knorr, K.H., Kuzyakov, Y., Wilmking, M., 2011. Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a C-14 pulse-labeling study. Biogeosciences, 8, 2365-2375. Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., Ly, B., Saw, J.H., Zhou, Z., Ren, Y., 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450, 879-882. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H., van Alen, T., Luesken, F., Wu, M.L., van de Pas-Schoonen, K.T., den Camp, H., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464, 543. Frenzel, P., Rudolph, J., 1998. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum. Plant and Soil, 202, 27-32. Graham, D.W., Chaudhary, J.A., Hanson, R.S., Arnold, R.G., 1993. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microbial Ecology, 25, 1-17. Gupta, V., Smemo, K.A., Yavitt, J.B., Fowle, D., Branfireun, B., Basiliko, N., 2013. Stable Isotopes Reveal Widespread Anaerobic Methane Oxidation Across Latitude and Peatland Type. Environmental Science & Technology, 47, 8273-8279. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500, 567. Heitmann, T., Blodau, C., 2006. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chemical Geology, 235, 12-20. Hinrichs, K.-U., Boetius, A., 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry, Ocean Margin Systems. Springer, pp. 457-477. Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805. Hoehler, T., Alperin, M., 1996. Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations, Microbial Growth on C1 compounds. Springer, pp. 326-333. Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451-463. Islam, T., Jensen, S., Reigstad, L.J., Larsen, Ø., Birkeland, N.-K., 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences, 105, 300-304. Juncher Jrgensen, C., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science & Technology, 43, 4851-4857. Keller, J.K., Weisenhorn, P.B., Megonigal, J.P., 2009. Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry, 41, 1518-1522. Klupfel, L., Piepenbrock, A., Kappler, A., Sander, M., 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci., 7, 195-200. Knittel, K., Boetius, A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process, Annual Review of Microbiology, pp. 311-334. Laanbroek, H.J., 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141-153. LaFage, J., Nutting, W., 1978. Food and feeding habits of termites. Nutrient Dynamics of Termites, 165-232. Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50. Lee, K.E., Wood, T.G., 1971. Termites and soils. Academic Press: London, UK. Liu, Y., Whitman, W.B., 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 1125, 171-189. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J., Woodward, J.C., 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382, 445-448. Meijide, A., Manca, G., Goded, I., Magliulo, V., Tommasi, P.d., Seufert, G., Cescatti, A., 2011. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 8, 3809-3821. Meulepas, R.J., Jagersma, C.G., Khadem, A.F., Stams, A.J., Lens, P.N., 2010. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Applied microbiology and biotechnology, 87, 1499-1506. Milucka, J., Ferdelman, T.G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., Kuypers, M.M.M., 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491, 541-+. Moore, T.R., De Young, A., Bubier, J.L., Humphreys, E.R., Lafleur, P.M., Roulet, N.T., 2011. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems, 14, 646-657. Moran, J.J., Beal, E.J., Vrentas, J.M., Orphan, V.J., Freeman, K.H., House, C.H., 2008. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 10, 162-173. Moran, J.J., House, C.H., Freeman, K.H., Ferry, J.G., 2005. Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea, 1, 303-309. Moran, J.J., House, C.H., Thomas, B., Freeman, K.H., 2007. Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. Journal of Geophysical Research: Biogeosciences, 112. Morita, R.Y., 1975. Psychrophilic bacteria. Bacteriological reviews, 39, 144. Nauhaus, K., Boetius, A., Krüger, M., Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 4, 296-305. Nauhaus, K., Treude, T., Boetius, A., Krüger, M., 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME‐I and ANME‐II communities. Environmental Microbiology, 7, 98-106. Neubauer, S.C., Givler, K., Valentine, S., Megonigal, J.P., 2005. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology, 86, 3334-3344. Ogawa, H., Tanoue, E., 2003. Dissolved organic matter in oceanic waters. Journal of Oceanography, 59, 129-147. Op den Camp, H.J., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., Jetten, M.S., Birkeland, N.K., Pol, A., Dunfield, P.F., 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1, 293-306. Orcutt, B., Meile, C., 2008. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences Discussions, 5, 1933-1967. Pol, A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S., den Camp, H.J.O., 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 450, 874-878. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damste, J.S.S., Op den Camp, H.J.M., Jetten, M.S.M., Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918-921. Reeburgh, W.S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107, 486-513. Roslev, P., King, G.M., 1996. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 19, 105-115. Rutherford, J., Hynes, H., 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia, 154, 33-48. Srensen, K., Finster, K., Ramsing, N., 2001. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microbial ecology, 42, 1-10. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., Orphan, V.J., 2016. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351, 703-707. Segarra, K.E., Schubotz, F., Samarkin, V., Yoshinaga, M.Y., Hinrichs, K.U., Joye, S.B., 2015. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature communications, 6, 7477. Segarra, K.E.A., Comerford, C., Slaughter, J., Joye, S.B., 2013. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Acta, 115, 15-30. Segers, R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23-51. Shannon, R.D., White, J.R., Lawson, J.E., Gilmour, B.S., 1996. Methane efflux from emergent vegetation in peatlands. Journal of Ecology, 239-246. Shima, S., Thauer, R.K., 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Current opinion in microbiology, 8, 643-648. Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56, 1536-1544. Smemo, K.A., Yavitt, J.B., 2011. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8, 779-793. Tornberg, T., Bendix, M., Brix, H., 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 2. Convective throughflow pathways and ecological significance. Aquatic Botany, 49, 91-105. Trotsenko, Y.A., Murrell, J.C., 2008. Metabolic Aspects of Aerobic Obligate Methanotrophy⋆. Advances in applied microbiology, 63, 183-229. Turetsky, M., Treat, C., Waldrop, M., Waddington, J., Harden, J., McGuire, A., 2008. Short‐term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: Biogeosciences, 113. Updegraff, K., Bridgham, S.D., Pastor, J., Weishampel, P., Harth, C., 2001. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecological Applications, 11, 311-326. Valentine, D.L., Reeburgh, W.S., 2000. New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2, 477-484. Van Der Nat, F.-J.W., Middelburg, J.J., 1998a. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry, 43, 79-104. van der Nat, F.-J.W., Middelburg, J.J., 1998b. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany, 61, 95-110. Wang, P.L., Chiu, Y.P., Cheng, T.W., Chang, Y.H., Tu, W.X., Lin, L.H., 2014. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front Microbiol, 5, 121. Whiting, G., Chanton, J., 1993. Primary production control of methane emission from wetlands. Nature 364, 794 - 795 Whiting, G. J., and Chanton, J. P. 1993. Primary production control of methane emission from wetlands. Nature, 794-795. Whiting, G.J., Chanton, J.P., 1992. Plant‐dependent CH4 emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 6, 225-231. Whittenbury, R., Dalton, H., 1981. The methylotrophic bacteria, The prokaryotes. Springer, pp. 894-902. Whittenbury, R., Dalton, H., Eccleston, M., Reed, H., 1975. The different types of methane-oxidizing bacteria and some of their more unusual properties. Microbial growth on C, 1-9. Zehnder, A., Brock, T., 1979. Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology, 137, 420-432.
|