跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭力綺
研究生(外文):Li-Chi Cheng
論文名稱:吳郭魚代謝性組織與耳石有機物之穩定性同位素分餾
論文名稱(外文):Stable isotopic fractionation in metabolic tissue andotolith organic matrix of tilapia (Oreochromis mossambicus)
指導教授:蕭仁傑蕭仁傑引用關係
口試委員:王佳惠王珮玲溫國彰
口試日期:2016-08-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:耳石有機物代謝性組織元素分析儀聯結穩定性同位素質譜儀氣相平台聯結穩定性同位素質譜儀穩定性同位素分餾
外文關鍵詞:otolith organic matrixmetabolic tissueEA-IRMSGasBench-IRMSstable isotopic fractionation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
耳石屬於代謝惰性的結構,其穩定性氮同位素分餾程度可能與其他的代謝性組織不同,但欠缺相關研究。本論文以莫三比克種吳郭魚作為實驗對象,分別餵食五種同位素值不同的餌料一年多後,取代謝性組織(肌肉、鰓絲、肝臟、鱗片),以元素分析儀聯結穩定性同位素質譜儀分析,而耳石有機物(非代謝性組織)則分別以元素分析儀聯結穩定性同位素質譜儀和氣相平台聯結穩定性同位素質譜儀進行分析,後者需先經過脫硝菌將有機氮轉化為氧化亞氮,分析結果指出氣相平台聯結穩定性同位素質譜儀所需的耳石粉末量僅佔元素分析儀聯結穩定性同位素質譜儀的1/20,可提供更高時間解析度。此外,代謝性組織的穩定性碳、氮同位素與餌料間有明顯的同位素分餾,穩定性氮同位素部份,以肌肉、鰓絲的同位素分餾值最大(3.4-5.6‰),肝臟則最小(2.1-3.5‰)。穩定性碳同位素部分,則以鱗片的同位素分餾值最大(4.7-6.4‰),肝臟則最低(-0.5-0.9‰)。不同於代謝性組織,耳石有機物的穩定性氮同位素與餌料間無顯著差異,攝食不同餌料的吳郭魚個體間,分餾值範圍為-0.51-0.69‰,且不論是耳石有機物的穩定性同位素值或是與餌料間同位素分餾,均與體重、標準體長間無顯著相關性。耳石中的氮同位素可能是直接來自攝食分解後且未經代謝過的胺基酸。此外,攝食不同餌料的吳郭魚耳石氮百分比,與個體攝入餌料的粗蛋白質百分比極為相似,但與標準體長、體重間,均無顯著相關性(除了餵食鰻魚粉的個體)。此研究提供往後研究的基礎,例如藉由分析耳石核心至邊緣的有機物穩定性同位素,將能追溯魚類在不同階段的攝食類別與食階轉變等生活史特徵。

Otolith isotopic fractionation may differ from other metabolic tissues due to it is metabolically inert calcified tissue. However, lack of knowledge is pronounced for stable isotopic values of otolith organic matrix. In this study tilapia (Oreochromis mossambicus) were fed with five different diets for up to one and half year under controlled conditions, then stable carbon and nitrogen isotope compositions of the metabolic tissues (muscle, liver, gill and scale) and otolith organic matrixes (metabolic inert) were measured by EA-IRMS and GasBench-IRMS, respectively. For the latter, otolith organic matrix had to be converted to N2O by Pseudomonas aureofaciens and P. chlororaphis before the analysis. The results suggested that the minimal mass reqired for the analysis was lower (1/20) for the GasBench-IRMS compared with the conventional EA-IRMS. In addition, isotopic compositions were significantly different between metabolic tissues and the diets. For stable nitrogen isotopic fractionation, muscle and gill had the largest values (3.4-5.6‰), while liver had the lowest values (2.1-3.5‰). For stable carbon isotopic fractionation, scale had the largest values (4.7-6.4‰), while liver had the lowest values (-0.5-0.9‰). Nevertheless, the δ15N compositions were not significantly different between otolith organic matrixes and the diets with the fractionation between -0.5-0.7‰. This result indicated that the source of nitrogen isotope in otolith organic matrix may be directly derived from amino acid without any metabolic transamination. There was no significant correlation among stable isotope values of otolith organic matrixes and somatic weight and standard length. Apart from these, the distribution of N% in otolith also showed similar pattern with crude protein percentage of the dies, except the tilapia fed on eel meal. N% of otolith in other individuals was not correlated to somatic weight and standard length of the fish. We conclude that high temporal resolutions of δ15N profiles analyzed by GasBench-IRMS and N2O can have wide applications, in studying the food sources and trophic shift of the fish at different life stages.

致謝 i
摘要 ii
Abstract iii
目錄 v
表格目錄 viii
圖目錄 x
附錄目錄 xii
壹、前言 1
1.1耳石與生活史之研究 2
1.1.1 耳石的微細結構 3
1.1.2 耳石的化學組成 4
1.1.2.2 耳石有機物質組成 5
1.1.3 耳石的穩定性同位素應用 6
1.1.4 氧化消解–細菌法的穩定性氮同位素分析與應用 8
1.2 代謝性組織的穩定性同位素分析 9
1.3 研究目的 10
1.3.1 實驗假設 11
1.3.2 實驗設計與目的 11
貳、材料方法 12
2.1 魚類樣本採集 12
2.2組織樣本處理及分析 13
2.2.1 組織樣本製備 13
2.2.2 穩定性碳、氮同位素分析 13
2.3 耳石樣本處理及分析 14
2.3.1 耳石樣本製備 14
2.3.2 耳石穩定性碳、氮穩定同位素分析 14
2.4 耳石氮含量估計 20
2.5統計分析 20
叁、結果 22
3.1樣本之成長差異 22
3.1.1 攝食不同餌料的個體成長差異比較 22
3.2餌料及各代謝姓組織間的穩定性碳、氮同位素 23
3.2.1 各餌料的穩定性同位素 24
3.2.2 攝食不同餌料的吳郭魚,各代謝性組織的穩定性同位素 24
3.2.3各組織的穩定性碳、氮同位素與個體成長之相關性 26
3.2.4各組織與餌料間的穩定性同位素分餾(isotopic fractionation) 26
3.3耳石有機物之穩定性氮同位素值 28
3.3.1 以EA-IRMS和GasBench-IRMS分析耳石有機物穩定性同位素所需的最少耳石粉末分析量比較 28
3.3.2 耳石有機物的穩定性氮同位素分析 29
3.3.3 耳石有機物與餌料間的穩定性氮同位素分餾 30
3.3.4 耳石有機物的穩定性氮同位素與個體成長差異間的相關性比較 31
3.4耳石氮含量 (N% in otolith organic matrix) 31
3.4.1 攝食不同餌料的吳郭魚之耳石氮含量 31
3.4.2 耳石氮含量與個體間成長差異之相關性 32
肆、討論 33
4.1攝食不同餌料的吳郭魚其成長差異探討 33
4.2 攝食不同餌料的吳郭魚,各代謝性組織與餌料間穩定性同位素探討 34
4.3耳石有機物之穩定性氮同位素值分析方法比較 38
4.4 攝食不同餌料的吳郭魚其耳石有機物之穩定性氮同位素值探討 40
4.5 耳石有機物之穩定性同位素在魚類生理生態上的應用 45
五、結論 47
參考文獻 48


Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences, 82(12), 4110-4114.
Allemand D, Cuif JP, Watabe N, Oishi M, Kawaguchi T (1994). The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. Bulletin de l''Institut océanographique, 129-139.
Arias J, Carrino DA, Fernández MS, Rodríguez JP, Dennis JE, Caplan, AI (1992). Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Archives of Biochemistry and Biophysics, 298(1), 293-302.
Arnold S, Plate U, Wiesmann HP, Kohl H, Höhling HJ (1997). Quantitative electron-spectroscopic diffraction (ESD) and electron-spectroscopic imaging (ESI) analyses of dentine mineralisation in rat incisors. Cell and tissue research, 288(1), 185-190.
Asano M, Mugiya Y (1993). Biochemical and calcium-binding properties of water-soluble proteins isolated from otoliths of the tilapia, Orecchromis niloticus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 104(1), 201-205.
Baba K, Shimizu M, Mugiya Y, Yamada J (1991). Otolith matrix proteins of walleye pollock; biochemical properties and immunohistochemical localization in the saccular tissue. In Mechanisms and Phylogeny of Mineralization in Biological Systems (pp. 57-61). Springer Japan.
Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky, GD, Morse DE (1996). Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56-58
Borelli G, Mayer-Gostan N, De Pontual H, Boeuf G, Payan P (2001). Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcified Tissue International, 69(6), 356-364.
Campana SE (1990). How reliable are growth back-calculations based on otoliths?. Canadian Journal of Fisheries and Aquatic Sciences, 47(11), 2219-2227.
Campana SE (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297.
Campana SE & Neilson JD (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032.
Chang N, Liu E, Liao Y, Shiao J (2015) Vertical habitat shift of viviparous and oviparous deep‐sea cusk eels revealed by otolith microstructure and stable‐isotope composition. Journal of Fish Biology, 86.2 (2015): 845-853.
Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ (2014) Inferring movement patterns of a coral reef fish using oxygen and carbon isotopes in otolith carbonate. Journal of Experimental Marine Biology and Ecology 456:18-25.
Davis JG, Oberholtzer JC, Burns FR, Greene MI (1995). Molecular cloning and characterization of an inner ear-specific structural protein. Science, 267(5200), 1031.
Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Marine Biology 2:105-113.
DeNiro MJ, Epstein S (1977). Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300), 261-263.
Elsdon TS, Gillanders BM (2003) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries 13:217-235.
Estep ML, Vigg S (1985). Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Canadian Journal of Fisheries and Aquatic Sciences, 42(11), 1712-1719.
Estrada JA, Lutcavage M, Thorrold SR (2005). Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology, 147(1), 37-45.
Florin ST, Felicetti LA, Robbins CT (2011). The biological basis for understanding and predicting dietary‐induced variation in nitrogen and sulphur isotope ratio discrimination. Functional Ecology, 25(3), 519-526.
Fishe LW, Termine JD, Dejter SW, Whitson SW, Yanagishita M, Kimura JH, NilssonB (1983). Proteoglycans of developing bone. Journal of Biological Chemistry, 258(10), 6588-6594.
Gao Y, Dettman DL, Piner KR, Wallace FR (2010) Isotopic correlation (δ18O versus δ13C) of otoliths in identification of groundfish stocks. Transactions of the American Fisheries Society 139:491-501.
Gauldie RW, & Nelson DGA (1988). Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology, 90(3), 501-509.
Glimcher MJ (1986). The nature of the mineral component of bone and the mechanism of calcification. Instructional course lectures, 36, 49-69.
Grnkjær P, Pedersen JB, Ankjær TT, Kjeldsen H, Heinemeier J, Steingrund P, Christensen JT (2013). Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 143-146.
Hare PE, Fogel ML, Stafford TW, Mitchell AD, Hoering TC (1991). The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science, 18(3), 277-292.
Heady WN, Moore JW (2013). Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia,172(1), 21-34.
Hunt JJ (1992). Morphological characteristics of otoliths for selected fish in the Northwest Atlantic. Journal of Northwest. Atlantic Fishery Science, 13, 63-75.
Hüssy K., Mosegaard H, Jessen F (2004). Effect of age and temperature on amino acid composition and the content of different protein types of juvenile Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61(6), 1012-1020.
Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32(3), 199-204.
Kalish JM (1991) δ13C and δ18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series 75:191-203.
Kelly B, Dempson JB, Power M (2006). The effects of preservation on fish tissue stable isotope signatures. Journal of Fish Biology, 69(6), 1595-1611.
Knapp AN, Sigman DM, & Lipschultz F (2005). N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time‐series Study site. Global Biogeochemical Cycles, 19(1).
Lin HY, Shiao JC, Chen YG, Iizuka Y (2012) Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep Sea Research Part I: Oceanographic Research Papers 61:123-130.
Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008). Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology, 77(4), 838-846.
Longmore C, Trueman C, Neat F, O''gorman E, Milton J, Mariani S (2011) Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Coryphaenoides rupestris. Marine Ecology Progress Series 435:209-224.
Mann S, Parker SB, Ross MD, Skarnulis AJ, & Williams RJP (1983). The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proceedings of the Royal Society of London B: Biological Sciences, 218(1213), 415-424.
McMahon KW, Hamady LL, Thorrold SR (2013). A review of ecogeochemistry approaches to estimating movements of marine animals. Limnology and Oceanography, 58(2), 697-714.
McMillan DN, Houlihan DF (1989). Short-term responses of protein synthesis to re-feeding in rainbow trout. Aquaculture, 79(1-4), 37-46.
Mill AC, Pinnegar JK, Polunin NVC (2007). Explaining isotope trophic‐step fractionation: why herbivorous fish are different. Functional Ecology, 21(6), 1137-1145.
Morales-Nin B (1986). Structure and composition of otoliths of Cape hake Merluccius capensis. South African Journal of Marine Science, 4(1), 3-10
Morales-Nin, B (1986). Chemical composition of the otoliths of the sea-bass (Dicentrarchus labrax Linnaeus, 1758)(Pisces, Serranidae). Cybium, 10:115-120
Morales-Nin B (1987) The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. South African Journal of Marine Science 5:255-262.
Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption—II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comparative Biochemistry and Physiology Part A: Physiology,57(2), 197-202.
Nydahl F (1978). On the peroxodisulphate oxidation of total nitrogen in waters to nitrate. Water Research, 12(12), 1123-1130.
Otterlei E, Folkvord A, & Nyhammer G (2002). Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science, 59(2), 401-410.
Pannella, G (1980). Growth patterns in fish sagittae. Skeletal growth of aquatic organisms, 519-560.
Parmentier E, Vandewalle P, Lagardère F (2001). Morpho‐anatomy of the otic region in carapid fishes: eco‐morphological study of their otoliths. Journal of Fish Biology, 58(4), 1046-1061.
Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. Geophysical Monograph Series 78:191-202.
Payan P, Edeyer A, De PH., Borelli G., Boeuf G, Mayer-Gostan N (1999). Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277(1), R123-R131.
Perga ME, Gerdeaux D (2003). Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001. Journal of Fish Biology, 63(5), 1197-1207.
Plate U, Arnold S, Reimer L, Höhling HJ, & Boyde A (1994). Investigation of the early mineralisation on collagen in dentine of rat incisors by quantitative electron spectroscopic diffraction (ESD). Cell and Tissue Research, 278(3), 543-547.
Pinnegar JK, Polunin NVC (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13(2), 225-231.
Pruell RJ, Taplin BK, Karr JD (2010) Stable carbon and oxygen isotope ratios of otoliths differentiate juvenile winter flounder (Pseudopleuronectes americanus) habitats. Marine and Freshwater Research 61:34-41.
Ren H, Sigman DM, Meckler AN, Plessen B, Robinson RS, Rosenthal Y, Haug GH (2009). Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science, 323(5911), 244-248.
Ren H, Sigman DM, Thunell RC, Prokopenko MC (2012). Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnology and Oceanography, 57(4), 1011-1024.
Reznick D, Lindbeck E, Bryga H (1989). Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 46(1), 108-112.
Robbins CT, Felicetti LA, Florin ST (2010). The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia, 162(3), 571-579.
Robinson JS, Mead JF (1973). Lipid absorption and deposition in rainbow trout (Salmo gairdnerii). Canadian journal of biochemistry, 51(7), 1050-1058.
Roth JD, Hobson KA (2000). Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Canadian Journal of Zoology, 78(5), 848-852.
Rounick JS, Hicks BJ (1985). The stable carbon isotope ratios of fish and their invertebrate prey in four New Zealand rivers. Freshwater Biology, 15(2), 207-214.
Sasagawa T, Mugiya Y (1996). Biochemical Properties of Water-Soluble Otolith Proteins and the Immunobiochemical Detection of the Proteins in Serum and Various Tissues in the Tilapia Oreochromis niloticus. Fisheries science, 62(6), 970-976.
Satterfield FR, Finney BP (2002). Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Progress in Oceanography, 53(2), 231-246.
Secor DH, Henderson-Arzapalo A, Piccoli P (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192:15-33.
Simkiss K (1974). Calcium metabolism of fish in relation to ageing. InInternational Symposium on the Ageing of Fish. Reading (UK). 19 Jul 1973.
Sinnatamby RN, Dempson JB, Power M (2008). A comparison of muscle‐and scale‐derived δ13C and δ15N across three life‐history stages of Atlantic salmon, Salmo salar. Rapid Communications in Mass Spectrometry, 22(18), 2773-2778.
Solomon CT, Weber PK, Cech J, Joseph J, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63:79-89.
Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007 a). Effects of body size and environment on diet-tissue δ 15 N fractionation in fishes. Journal of Experimental Marine Biology and Ecology, 340(1), 1-10.
Sweeting CJ, Barry JT, Polunin NVC, Jennings S (2007 b). Effects of body size and environment on diet-tissue δ 13 C fractionation in fishes.Journal of Experimental Marine Biology and Ecology, 352(1), 165-176.
Takagi Y, Takahashi A (1999). Characterization of otolith soluble‐matrix producing cells in the saccular epithelium of rainbow trout (Oncorhynchus mykiss) inner ear. The Anatomical Record, 254(3), 322-329.
Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61:2909-2919.
Trueman C, Rickaby R, Shephard S (2013) Thermal, trophic and metabolic life histories of inaccessible fishes revealed from stable‐isotope analyses: a case study using orange roughy Hoplostethus atlanticus. Journal of Fish Biology 83:1613-1636.
Tzeng W, Tsai Y (1994) Changes in otolith microchemistry of the Japanese eel, Anguitta japonica, during its migration from the ocean to the rivers of Taiwan. Journal of Fish Biology 45:671-683.
Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF and Lozys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Marine Ecology Progress Series, 348: 285-295.
Volk EC, Blakley A, Schroder SL, Kuehner SM (2000) Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fisheries Research 46:251-266.
Weiss RE, Watabe N (1978) Studies on the biology of fish bone—I. Bone resorption after scale removal. Comparative Biochemistry and Physiology Part A: Physiology, 60(2), 207-211.
Wilson DT, McCormick MI (1999). Microstructure of settlement-marks in the otoliths of tropical reef fishes. Marine Biology, 134(1), 29-41.
Wheeler AP, Sikes CS (1984). Regulation of carbonate calcification by organic matrix. American Zoologist, 24(4), 933-944.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top