|
Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences, 82(12), 4110-4114. Allemand D, Cuif JP, Watabe N, Oishi M, Kawaguchi T (1994). The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. Bulletin de l''Institut océanographique, 129-139. Arias J, Carrino DA, Fernández MS, Rodríguez JP, Dennis JE, Caplan, AI (1992). Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Archives of Biochemistry and Biophysics, 298(1), 293-302. Arnold S, Plate U, Wiesmann HP, Kohl H, Höhling HJ (1997). Quantitative electron-spectroscopic diffraction (ESD) and electron-spectroscopic imaging (ESI) analyses of dentine mineralisation in rat incisors. Cell and tissue research, 288(1), 185-190. Asano M, Mugiya Y (1993). Biochemical and calcium-binding properties of water-soluble proteins isolated from otoliths of the tilapia, Orecchromis niloticus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 104(1), 201-205. Baba K, Shimizu M, Mugiya Y, Yamada J (1991). Otolith matrix proteins of walleye pollock; biochemical properties and immunohistochemical localization in the saccular tissue. In Mechanisms and Phylogeny of Mineralization in Biological Systems (pp. 57-61). Springer Japan. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky, GD, Morse DE (1996). Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56-58 Borelli G, Mayer-Gostan N, De Pontual H, Boeuf G, Payan P (2001). Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcified Tissue International, 69(6), 356-364. Campana SE (1990). How reliable are growth back-calculations based on otoliths?. Canadian Journal of Fisheries and Aquatic Sciences, 47(11), 2219-2227. Campana SE (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297. Campana SE & Neilson JD (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032. Chang N, Liu E, Liao Y, Shiao J (2015) Vertical habitat shift of viviparous and oviparous deep‐sea cusk eels revealed by otolith microstructure and stable‐isotope composition. Journal of Fish Biology, 86.2 (2015): 845-853. Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ (2014) Inferring movement patterns of a coral reef fish using oxygen and carbon isotopes in otolith carbonate. Journal of Experimental Marine Biology and Ecology 456:18-25. Davis JG, Oberholtzer JC, Burns FR, Greene MI (1995). Molecular cloning and characterization of an inner ear-specific structural protein. Science, 267(5200), 1031. Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Marine Biology 2:105-113. DeNiro MJ, Epstein S (1977). Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300), 261-263. Elsdon TS, Gillanders BM (2003) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries 13:217-235. Estep ML, Vigg S (1985). Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Canadian Journal of Fisheries and Aquatic Sciences, 42(11), 1712-1719. Estrada JA, Lutcavage M, Thorrold SR (2005). Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology, 147(1), 37-45. Florin ST, Felicetti LA, Robbins CT (2011). The biological basis for understanding and predicting dietary‐induced variation in nitrogen and sulphur isotope ratio discrimination. Functional Ecology, 25(3), 519-526. Fishe LW, Termine JD, Dejter SW, Whitson SW, Yanagishita M, Kimura JH, NilssonB (1983). Proteoglycans of developing bone. Journal of Biological Chemistry, 258(10), 6588-6594. Gao Y, Dettman DL, Piner KR, Wallace FR (2010) Isotopic correlation (δ18O versus δ13C) of otoliths in identification of groundfish stocks. Transactions of the American Fisheries Society 139:491-501. Gauldie RW, & Nelson DGA (1988). Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology, 90(3), 501-509. Glimcher MJ (1986). The nature of the mineral component of bone and the mechanism of calcification. Instructional course lectures, 36, 49-69. Grnkjær P, Pedersen JB, Ankjær TT, Kjeldsen H, Heinemeier J, Steingrund P, Christensen JT (2013). Stable N and C isotopes in the organic matrix of fish otoliths: validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 143-146. Hare PE, Fogel ML, Stafford TW, Mitchell AD, Hoering TC (1991). The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science, 18(3), 277-292. Heady WN, Moore JW (2013). Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia,172(1), 21-34. Hunt JJ (1992). Morphological characteristics of otoliths for selected fish in the Northwest Atlantic. Journal of Northwest. Atlantic Fishery Science, 13, 63-75. Hüssy K., Mosegaard H, Jessen F (2004). Effect of age and temperature on amino acid composition and the content of different protein types of juvenile Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61(6), 1012-1020. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32(3), 199-204. Kalish JM (1991) δ13C and δ18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series 75:191-203. Kelly B, Dempson JB, Power M (2006). The effects of preservation on fish tissue stable isotope signatures. Journal of Fish Biology, 69(6), 1595-1611. Knapp AN, Sigman DM, & Lipschultz F (2005). N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time‐series Study site. Global Biogeochemical Cycles, 19(1). Lin HY, Shiao JC, Chen YG, Iizuka Y (2012) Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep Sea Research Part I: Oceanographic Research Papers 61:123-130. Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008). Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology, 77(4), 838-846. Longmore C, Trueman C, Neat F, O''gorman E, Milton J, Mariani S (2011) Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Coryphaenoides rupestris. Marine Ecology Progress Series 435:209-224. Mann S, Parker SB, Ross MD, Skarnulis AJ, & Williams RJP (1983). The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proceedings of the Royal Society of London B: Biological Sciences, 218(1213), 415-424. McMahon KW, Hamady LL, Thorrold SR (2013). A review of ecogeochemistry approaches to estimating movements of marine animals. Limnology and Oceanography, 58(2), 697-714. McMillan DN, Houlihan DF (1989). Short-term responses of protein synthesis to re-feeding in rainbow trout. Aquaculture, 79(1-4), 37-46. Mill AC, Pinnegar JK, Polunin NVC (2007). Explaining isotope trophic‐step fractionation: why herbivorous fish are different. Functional Ecology, 21(6), 1137-1145. Morales-Nin B (1986). Structure and composition of otoliths of Cape hake Merluccius capensis. South African Journal of Marine Science, 4(1), 3-10 Morales-Nin, B (1986). Chemical composition of the otoliths of the sea-bass (Dicentrarchus labrax Linnaeus, 1758)(Pisces, Serranidae). Cybium, 10:115-120 Morales-Nin B (1987) The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. South African Journal of Marine Science 5:255-262. Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption—II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comparative Biochemistry and Physiology Part A: Physiology,57(2), 197-202. Nydahl F (1978). On the peroxodisulphate oxidation of total nitrogen in waters to nitrate. Water Research, 12(12), 1123-1130. Otterlei E, Folkvord A, & Nyhammer G (2002). Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science, 59(2), 401-410. Pannella, G (1980). Growth patterns in fish sagittae. Skeletal growth of aquatic organisms, 519-560. Parmentier E, Vandewalle P, Lagardère F (2001). Morpho‐anatomy of the otic region in carapid fishes: eco‐morphological study of their otoliths. Journal of Fish Biology, 58(4), 1046-1061. Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. Geophysical Monograph Series 78:191-202. Payan P, Edeyer A, De PH., Borelli G., Boeuf G, Mayer-Gostan N (1999). Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277(1), R123-R131. Perga ME, Gerdeaux D (2003). Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001. Journal of Fish Biology, 63(5), 1197-1207. Plate U, Arnold S, Reimer L, Höhling HJ, & Boyde A (1994). Investigation of the early mineralisation on collagen in dentine of rat incisors by quantitative electron spectroscopic diffraction (ESD). Cell and Tissue Research, 278(3), 543-547. Pinnegar JK, Polunin NVC (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13(2), 225-231. Pruell RJ, Taplin BK, Karr JD (2010) Stable carbon and oxygen isotope ratios of otoliths differentiate juvenile winter flounder (Pseudopleuronectes americanus) habitats. Marine and Freshwater Research 61:34-41. Ren H, Sigman DM, Meckler AN, Plessen B, Robinson RS, Rosenthal Y, Haug GH (2009). Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science, 323(5911), 244-248. Ren H, Sigman DM, Thunell RC, Prokopenko MC (2012). Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnology and Oceanography, 57(4), 1011-1024. Reznick D, Lindbeck E, Bryga H (1989). Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences, 46(1), 108-112. Robbins CT, Felicetti LA, Florin ST (2010). The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia, 162(3), 571-579. Robinson JS, Mead JF (1973). Lipid absorption and deposition in rainbow trout (Salmo gairdnerii). Canadian journal of biochemistry, 51(7), 1050-1058. Roth JD, Hobson KA (2000). Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Canadian Journal of Zoology, 78(5), 848-852. Rounick JS, Hicks BJ (1985). The stable carbon isotope ratios of fish and their invertebrate prey in four New Zealand rivers. Freshwater Biology, 15(2), 207-214. Sasagawa T, Mugiya Y (1996). Biochemical Properties of Water-Soluble Otolith Proteins and the Immunobiochemical Detection of the Proteins in Serum and Various Tissues in the Tilapia Oreochromis niloticus. Fisheries science, 62(6), 970-976. Satterfield FR, Finney BP (2002). Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Progress in Oceanography, 53(2), 231-246. Secor DH, Henderson-Arzapalo A, Piccoli P (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192:15-33. Simkiss K (1974). Calcium metabolism of fish in relation to ageing. InInternational Symposium on the Ageing of Fish. Reading (UK). 19 Jul 1973. Sinnatamby RN, Dempson JB, Power M (2008). A comparison of muscle‐and scale‐derived δ13C and δ15N across three life‐history stages of Atlantic salmon, Salmo salar. Rapid Communications in Mass Spectrometry, 22(18), 2773-2778. Solomon CT, Weber PK, Cech J, Joseph J, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63:79-89. Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007 a). Effects of body size and environment on diet-tissue δ 15 N fractionation in fishes. Journal of Experimental Marine Biology and Ecology, 340(1), 1-10. Sweeting CJ, Barry JT, Polunin NVC, Jennings S (2007 b). Effects of body size and environment on diet-tissue δ 13 C fractionation in fishes.Journal of Experimental Marine Biology and Ecology, 352(1), 165-176. Takagi Y, Takahashi A (1999). Characterization of otolith soluble‐matrix producing cells in the saccular epithelium of rainbow trout (Oncorhynchus mykiss) inner ear. The Anatomical Record, 254(3), 322-329. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61:2909-2919. Trueman C, Rickaby R, Shephard S (2013) Thermal, trophic and metabolic life histories of inaccessible fishes revealed from stable‐isotope analyses: a case study using orange roughy Hoplostethus atlanticus. Journal of Fish Biology 83:1613-1636. Tzeng W, Tsai Y (1994) Changes in otolith microchemistry of the Japanese eel, Anguitta japonica, during its migration from the ocean to the rivers of Taiwan. Journal of Fish Biology 45:671-683. Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF and Lozys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Marine Ecology Progress Series, 348: 285-295. Volk EC, Blakley A, Schroder SL, Kuehner SM (2000) Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fisheries Research 46:251-266. Weiss RE, Watabe N (1978) Studies on the biology of fish bone—I. Bone resorption after scale removal. Comparative Biochemistry and Physiology Part A: Physiology, 60(2), 207-211. Wilson DT, McCormick MI (1999). Microstructure of settlement-marks in the otoliths of tropical reef fishes. Marine Biology, 134(1), 29-41. Wheeler AP, Sikes CS (1984). Regulation of carbonate calcification by organic matrix. American Zoologist, 24(4), 933-944.
|