(3.238.174.50) 您好!臺灣時間:2021/04/16 16:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅珮純
研究生(外文):Pei-Chun Lo
論文名稱:石首魚科分子系統分類及生物地理學研究
論文名稱(外文):Molecular Systematics and Biogeography of the Family Sciaenidae (Teleostei: Perciformes)
指導教授:陳韋仁陳韋仁引用關係
口試委員:莫顯蕎戴昌鳳邵廣昭劉淑惠
口試日期:2016-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:149
中文關鍵詞:石首魚科親緣關係生物地理新世界印度西太平洋系統分類物種界定
外文關鍵詞:SciaenidaephylogenybiogeographyNew WorldIndo-West Pacific (IWP)systematicsspecies delimitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石首魚科 (Sciaenidae) 的魚種由於會發出聲音,又被稱為 croakers 或drums,包含68屬292個有效種,屬於鱸形目 (Perciformes) 下一個物種數眾多的科。該科的魚類大部分生活在太平洋、印度洋及大西洋的海水、半淡鹹水水域;僅有少數棲息在淡水中。對此全球廣泛分佈的類群而言,其經常引發生物地理學家進一步探討此類群的起源及其在時間、空間上的物種多樣性變化的呈現。然而,如石首魚這些非珊瑚礁魚類類群,我們對其歷史生物地理學的研究卻極為稀少。此外石首魚亦為生態及經濟上的重要海水魚。近幾十年來,石首魚科物種受到近岸漁業、商業性採集及捕撈蝦貨時的混獲威脅,其產量正在逐年減少中。為了制訂並施行有效的保育措施,對於石首魚物種分類知識及其間親緣關係的了解為首要目標。本研究目的為:1) 探討全球石首魚科內的親緣關係;2) 建構石首魚的生物地理,並加以探討其起源,進一步檢視所有可能造成現今石首魚地理分布型式的作用機制; 3) 就印度─西太平洋地區的石首魚之正確分類及種名有效性進行調查。
針對前兩項目的,本研究利用93種、52屬全球採樣的石首魚個體,利用兩個粒線體基因及四個核基因 (粒線體基因COI及Cyt b與核基因RAG1、RH、EGR1及EGR2B,共6619 bp) 重建其親緣關係樹。結果顯示石首魚科為一單系群。在此親緣關係樹中有15個支持度高的主要譜系 (Lineage),其中有部分關係在先前的研究並未被提出過。其中8個屬為單系群,同時有8個屬非單系群。而8個棲息在淡水的石首魚種 (本研究分析包含5/6個淡水石首魚屬,8/25個種在),根據其所分布的不同大陸各自形成三個不同的譜系。
利用化石證據輔助,針對歷史生物地理的研究結果呈現:現生種的石首魚起源於晚漸新世 (late Oligocene) 至早中新世 (Early Miocene) 的熱帶美洲。早中新世時經歷了兩次由起源地向外擴張的事件,而其中一次促使石首魚擴張至印度─西太平洋。印度─西太平洋特有的石首魚屬為單一祖先起源,經由區域內的物種分化造成此區為目前石首魚生物多樣性最高的海域。
此外,針對第三個目的,本研究分析了印度─西太平洋特有的18個石首魚屬、51個形態種 (Morpho-species),包含308個從96個不同地區採集的個體。利用兩種不同的物種界定工具 (ABGD和GMYC) 分析COI基因,並藉由不同物種定義下的各前提 (例如:遺傳相似性、單系群、地理分布及形態特徵) 協助,結果顯示在此分析的印度─西太平洋石首魚包含60個分類單位 (Operational Taxonomic Units; OTUs),此顯示為可能的新種或隱蔽種。此外,先前所建構之全球石首魚親緣關係樹中顯示的單系群屬亦得到再次的確認。然而由於雙棘原始黃姑魚屬 (Protonibea) 及毛鱨屬 (Megalonibea) 形成一單系群,在此我認為毛鱨屬應為無效的屬。
本研究提供石首魚科在現階段最為全面性的分子親緣關係研究。其貢獻除能有效解決此科魚類在系統分類上的問題,有助於增加我們對全球廣泛分布的非珊瑚礁魚種之歷史生物地理學的了解外,針對印度─西太平洋地區石首魚的親緣關係研究亦為未來石首魚分類研究的基礎。而這些基礎研究在管理石首魚漁業方面也可提供最為基本的觀念。


The family Sciaenidae, also known as croakers or drums, contains approximately 292 species in 68 currently recognized genera and is one of the large perciform families. Members within this family mostly occur in marine and brackish waters of the Atlantic, Indian and Pacific Oceans; only a few inhabit freshwaters. As the worldwide-distributed groups of living animals always attract the attention of biogeographers to document the origins and patterns of diversification in time and space, the knowledge of historical biogeography worldwide within the non-coral marine species is still very limited, such as the Sciaenidae. In addition, most of the sciaenid species are ecologically, economically and recreationally important fish. Since the past decades near-shore fishing, commercial trawling and even by-catch in shrimp fisheries threaten the sciaenid species all over the world. The fishery production has been declining yearly. In order to create and implement effective conservative strategies, taxonomic knowledge of conservative targets and clear phylogenetic relationships within Sciaenidae are essential. The aims of this study are 1) to infer the phylogenetic relationships of the global Sciaenidae; 2) to reconstruct the historical biogeography of the global Sciaenidae to investigate the origin and to test the hypotheses explaining the present-day biogeographic patterns of the global Sciaenidae; 3) to further review and clarify the systematics of the species within the sciaenid genera that are endemic to the Indo-West Pacific (IWP).
For the former two aims, a total of 93 globally sampled sciaenid species from 52 genera were used for reconstructing a molecular phylogeny of the global sciaenids based on two mitochondrial and four nuclear genes (i.e. mitochondrial COI and Cyt b plus nuclear RAG1, RH, EGR1, EGR2B gene; total 6619 bp). The partitioned maximum-likelihood analysis supports the monophyly of the family Sciaenidae. Within the inferred phylogenetic tree, fifteen main and well-supported lineages were identified; some of which have not been recognized previously. Eight genera for which two or more species were examined are monophyletic while eight others are not. The eight strictly freshwater sciaenid species (from five of six described genera) examined herein form three independent freshwater lineages/clades.
In addition, the historical biogeographical analysis concomitant with fossil evidence indicates that the crown group sciaenids originated and diversified in the tropical America during the Oligocene to Early Miocene before undergoing two range expansions. Later eastward dispersal events, subsequent diversification via vicariates (EA vs. IWP), and within region (e.g., IWP) diversification are hypothesized to account for their current global distribution and species diversity patterns.
For the third aim, the present study with the emphasis on the sciaenid genera endemic to the IWP (IWP clade). A total of 308 samples from 51 out of 91 recognized sciaenid morpho-species sampled from 96 different localities within the IWP clade were used in the conducting analyses. Species delimitation analyses conducted by using two different tools (ABGD and GMYC) based on COI gene dataset and other lines of evidence (genetic similarity, monophyly, geographic distribution and morphology) result in 60 OTUs (Operational Taxonomic Units) than expected. This indicates that possible cryptic and/or potential new species are present. The result from the phylogenetic analysis conducted with likelihood method confirms the monophyly of the IWP sciaenid clade. However, the genus Protonibea forms a monophyletic group with genus Megalonibea. This thus suggests that the Megalonibea is an invalid genus.
In summary, I provide the most comprehensive molecular systematic study of the Sciaenidae, which will advantage the future work with the sciaenids, especially to resolve several issues in their systematics, as well as to reliably reconstruct their historical biogeography. Additionally, the advanced phylogenetic study of those IWP endemic sciaenids provides an important framework for the taxonomic study of the family Sciaenidae. Furthermore, the results on DNA-based species delimitation analyses have increased the pace and stringency of our biodiversity assessments that could be served as a guideline for the management and the conservation of the IWP sciaenid species.


口試委員論文審定書 i
致謝 ii
Chapter 1 General Introduction 1
1.1 Croakers and drums, Sciaenidae 1
1.2 Fisheries facts of the Sciaenidae 2
1.3 Taxonomy of the Sciaenidae 3
1.4 Phylogeny of the Sciaenidae 5
1.5 Biogeography of the Sciaenidae 6
1.6 Sciaenids endemic to the Indo-West Pacific 8
1.7 The aims of this dissertation 9
Chapter 2 Phylogeny of the Sciaenidae 14
2.1 Introduction 14
2.2 Materials and Methods 14
2.2.1 Taxonomic sampling 14
2.2.2 Character sampling 15
2.2.3 Analytical methods 17
2.3 Results 18
2.4 Discussion 18
Chapter 3 Historical biogeography of the Sciaenidae 26
3.1 Introduction 26
3.2 Materials and Methods 26
3.2.1 Ethics statement 26
3.2.2 Sampling collection 27
3.2.3 Analytical methods 27
3.3 Results 30
3.3.1 Time-calibrated Phylogenetic 30
3.3.2 Habitat Preference Evolution 31
3.3.3 Ancestral Area Reconstruction 31
3.4 Discussion 32
3.4.1 The origin time of the Sciaenidae 32
3.4.2 Evolutionary Habitat Transitions 33
3.4.3 Region of Origin and Early Diversification of the Sciaenidae 35
3.4.4 Origin of Current Distribution and Diversity Pattern of the Sciaenidae 36
Chapter 4 Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade 46
4.1 Introduction 46
4.2 Materials and Methods 47
4.2.1 Ethics statement 47
4.2.2 Sample collection 47
4.2.3 DNA extraction, PCR amplification and sequencing 48
4.2.4 Analytical methods 49
4.3 Results and Discussions 53
4.3.1 Characteristics of sequence data 53
4.3.2 Inferred phylogenetic trees 54
4.3.3 Species delimitation and diversity 58
4.3.4 Cryptic diversity and necessity for further taxonomic consideration for the species within the IWP clade 60
Chapter 5 Conclusion 99
References 102
Appendix I – Sample list of phylogenetic relationship reconstruction. 122
Appendix II – Primers and PCR protocol used in this study. 132
Appendix III – Sample list of historical biogeography analysis. 133
Appendix IV – Publication 137


Adams, C.G., Gentry, A.W., Whybrow, P.J., 1983. Dating the terminal Tethyan event. Utr. Micropaleontol. Bull. 30, 273–298.
Aguilera, O., Rodrigues de Aguilera, D., 2003. Two new otolith-based sciaenid species of the genus Plagioscion from South American Neogene marine sediments. J. Paleontol. 77, 1133–1138.
Amorim, M.C.P., Hawkins, A.D., 2000. Growling for food: acoustic emissions during competitive feeding of the streaked gurnard. J. Fish Biol. 57, 895–907.
Avise, J.C., Ellis, D., 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos. Trans. R. Soc. B Biol. Sci. 312, 325–342.
Bannikov, A.F., 2013. A new late Neogene genus of croakers (Perciformes, Sciaenidae) from the Eastern Black Sea Region. Paleontol. J. 47, 190–198.
Bannikov, A.F., Carnevale, G., Landini, W., 2009. A new early Miocene genus of the family Sciaenidae (Teleostei, Perciformes) from the eastern Paratethys. C. R. Palevol 8, 535–544.
Barbosa, A.J.B., Sampaio, I., Schneider, H., Santos, S., 2014. Molecular phylogeny of weakfish species of the Stellifer group (Sciaenidae, Perciformes) of the Western South Atlantic based on mitochondrial and nuclear data. PLoS One 9, e102250.
Barney, R.L., 1926. The distribution of the fresh-water sheepshead, Aplodinotus grunniens Rafinesque, in respect to the glacial history of North America. Ecology 7, 351–364.
Bellwood, D.R., Wainwright, P.C., 2002. The history and biogeography of fishes on coral reefs, in: Sale, P.F. (Ed.), Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. San Diego: Academic Press, pp. 8–32.
Benson, D.A., Karsch-Mizrachi, I., Lipmam, D.J., Ostell, J., Rapp, B.A., Wheeler., D.L., 2000. GenBank. Nucleic Acids Res. 28, 15–18.
Bloom, D.D., Lovejoy, N.R., 2012. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J. Evol. Biol. 25, 701–715.
Boeger, W. a., Marteleto, F.M., Zagonel, L., Braga, M.P., 2014. Tracking the history of an invasion: the freshwater croakers (Teleostei: Sciaenidae) in South America. Zool. Scr. 44, 250–262.
Boeger, W.A., Kritsky, D.C., 2003. Parasites, fossils and geologic history: Historical biogeography of the South American freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae). Zool. Scr. 32, 3–11.
Borsa, P., Béarez, P., Paijo, S., Chen, W.J., 2013a. Gymnocranius superciliosus and Gymnocranius satoi, two new large-eye breams (Sparoidea: Lethrinidae) from the Coral Sea and adjacent regions. C. R. Biol. 336, 233–240.
Borsa, P., Hsiao, D.-R., Carpenter, K.E., Chen, W.-J., 2013b. Cranial morphometrics and mitochondrial DNA sequences distinguish cryptic species of the longface emperor (Lethrinus olivaceus), an emblematic fish of Indo-West Pacific coral reefs. C. R. Biol. 336, 505–514.
Briggs, J.C., 1999. Coincident biogeographic patterns: Indo-west Pacific Ocean. Evolution 53, 326–335.
Briggs, J.C., 2003. Marine centres of origin as evolutionary engines. J. Biogeogr. 30, 1–18.
Briggs, J.C., 2007. Marine longitudinal biodiversity: causes and conservation. Divers. Distrib. 13, 544–555.
Briggs, J.C., Bowen, B.W., 2013. Marine shelf habitat: Biogeography and evolution. J. Biogeogr. 40, 1023–1035.
Brzobohatý, R., Nolf, D., Kroupa, O., 2007. Fish Otoliths from the Middle Miocene of Kienberg at Mikulov, Czech Republic, Vienna Basin: their paleoenvironmental and paleogeographic significance. Bull. Inst. R. Sci. Nat. Belg. Sci. Terre. 7, 167–196.
Carstens, B.C., Pelletier, T.A., Reid, N.M., Satler, J.D., 2013. How to fail at species delimitation. Mol. Ecol. 22, 4369–4383.
Chao, L.N., 1978. A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NNOA Tech. Rep. Circ. 415, 1–65.
Chen, W.-J., Bonillo, C., Lecointre, G., 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288.
Chen, W.-J., Lavoué, S., Beheregaray, L.B., Mayden, R.L., 2014a. Historical biogeography of a new antitropical clade of temperate freshwater fishes. J. Biogeogr. 41, 1806–1818.
Chen, W.-J., Lavoué, S., Mayden, R.L., 2013. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 67, 2218–2239.
Chen, W.-J., Mayden, R.L., 2010. A Phylogenomic Perspective on the New Era of Ichthyology. Bioscience 60, 421–432.
Chen, W.-J., Miya, M., Saitoh, K., Mayden, R.L., 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134.
Chen, W.-J., Ortí, G., Meyer, A., 2004. Novel evolutionary relationship among four fish model systems. Trends Genet. 20, 424–431.
Chen, W.-J., Ruiz-Carus, R., Ortí, G., 2007. Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. J. Fish Biol. 70, 202–218.
Chen, W.-J., Santini, F., Lavoué, S., Carnevale, G., Chen, J.-N., Liu, S.-H., Mayden, R.L., 2014b. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Front. Mar. Sci. 1, doi: 10.3389/fmars.2014.00053.
Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K., Barut, N., 2000. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221–227.
Cooke, G.M., Chao, N.L., Beheregaray, L.B., 2012. Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738.
Costa, M.D.P., Muelbert, J.H., Moraes, L.E., Vieira, J.P., Castello, J.P., 2014. Estuarine early life stage habitat occupancy patterns of whitemouth croaker Micropogonias furnieri (Desmarest, 1830) from the Patos Lagoon, Brazil. Fish. Res. 160, 77–84.
Cowman, P.F., Bellwood, D.R., 2013. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B 208, 1–8.
Coyne, J.A., Orr., H.A., 2004. Speciation, 1st ed. Sinauer Associates. Inc., Sunderland, Massachusetts, USA.
Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S., Weston, P.H., Westoby, M., Wilf, P., Linder, H.P., 2009. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756.
Dadzie, S., 2007. Vitellogenesis , oocyte maturation pattern, spawning rhythm and spawning frequency in Otolithes ruber (Schneider, 1801) (Sciaenidae) in the Kuwaiti waters of the Arabian Gulf. Sci. Mar. 71, 239–248.
De Queiroz, K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879–886.
Desse, J., Desse-Derset, N., 1999. Un grand Sciaenidae (Teleostei: Perciformes) du genre Megalonibea présent sur la côte du balouchistan pakistanais? Cybium 23, 345–352.
Diester-Haass, L., Meyers, P.A., Rothe, P., 1990. Miocene history of the Benguela Current and Antarctic ice volumes: evidence from rhytmic sedimentation and current growth across the Walvis Ridge (deep sea drilling project sites 362 and 532). Paleoceanography 5, 685–707.
Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214–222.
Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.
Dulvy, N.K., Sadovy, Y., Reynolds, J.D., 2003. Extiction vulnerability in marine populations. Fish Fish. 4, 25–64.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.
Eschmeyer, W.N., Fong, J.D., 2015. Species by Family/Subfamily. URL http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed 11.18.15).
Eschmeyer, W.N., Fricke, R., 2015. Catalog of fishes: Genera, species, references. URL http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 11.18.15).
Esselstyn, J.A., Evans, B.J., Sedlock, J.L., Khan, F.A.A., Heaney, L.R., 2012. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proc. R. Soc. B Biol. Sci.
Ezard, T., Fujisawa, T., Barraclough, T., 2009. SPLITS: SPecies LImits by Threshold Statistics. R Packag. version 1.
FAO, 2015. Fishery and Aquaculture Statistics. FAO Fish. Aquac. Dep. URL http://www.fao.org/fishery/fishfinder/en
Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Fierstine, H.L., Huddleston, R.W., Takeuchi, G.T., 2012. Catalog of the Neogene bony fishes of California: A systematic inventory of all published accouts. Occas. Pap. Calif. Acad. Sci. 159, 1–206.
Figueiredo, M.B., Neta, R.N.F.C., Nunes, J.L.S., Almeida, Z. da S. de, 2014. Feeding habits of Macrodon ancylodon (Actinopterygii, Sciaenidae) in northeast, Brazil. Rev. Biol. Mar. Oceanogr. 49, 559–566.
Frehse, F. a., Valduga, M.O., Corrêa, M.F.M., Pinheiro, P.C., Vitule, J.R.S., 2015. Feeding ecology and resource sharing patterns between Stellifer rastrifer (Jordan, 1889) and S. brasiliensis (Schultz, 1945) (Perciformes: Sciaenidae) along the coasts of Paraná and Santa Catarina, Brazil. J. Appl. Ichthyol. 31, 479–486.
Froese, R., Pauly, D., 2011. FishBase. URL http://www.fishbase.org
Fujisawa, T., Barraclough, T.G., 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–24.
Gannon, D.P., 2007. Acoustic Behavior of Atlantic Croaker, Micropogonias undulatus (Sciaenidae). Copeia 1, 193–204.
Gannon, D.P., Waples, D.M., 2004. Diets of coastal bottlenose dolphins From the U.S. Mid-Atlantic coast differ by habitat. Mar. Mammal Sci. 20, 527–545.
Gaudant, M., 1978. Contribution à l’étude anatomique et systématique de l''ichtyofaune cénomanienne du Portugal. Première partie: les Acanthopterygii. Comun. dos Serviços Geológicos Port. 63, 105–149.
Gayet, M., 1980. Contribution à l’étude anatomique et systématique des poissons cénomamiens du Liban, anciennement placés dans les Acanthoptérygiens. Mém. Mus. natn. Hist. nat. Sér. 44, 1–149.
Girone, A., Nolf, D., 2009. Fish otoliths from the Priabonian (Late Eocene) of North Italy and South-East France–Their paleobiogeographical significance. Rev. Micropaléontologie 52, 195–218.
González-rodríguez, K., Fielitz, C., 2008. A new species of acanthomorph fish from the Upper Cretaceous Muhi Quarry, Hidalgo, Central Mexico, in: Arratia, G., Schultze, H.-P., Wilson, M.V.H. (Eds.), Mesozoic Fishes 4 - Homology and Phylogeny. Verlag Dr. Friedrich Pfeil, München, Germany, pp. 399–411.
Groeneveld, J.C., Gopal, K., George, R.W., Matthee, C.A., 2007. Molecular phylogeny of the spiny lobster genus Palinurus (Decapoda: Palinuridae) with hypotheses on speciation in the NE Atlantic/Mediterranean and SW Indian Ocean. Mol. Phylogenet. Evol. 45, 102–110.
Grove, J.S., Lavenberg, R.J., 1997. The fishes of the Galápagos Islands. Stanford University Press, Stanford, CA.
Grubich, J., 2003. Morphological convergence of pharyngeal jaw structure in durophagous perciform fish. Biol. J. Linn. Soc. 80, 147–165.
Han, Z.Q., Gao, T.X., Yanagimoto, T., Sakurai, Y., 2008a. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fish. Sci. 74, 544–552.
Han, Z.Q., Gao, T.X., Yanagimoto, T., Sakurai, Y., 2008b. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fish. Sci. 74, 770–780.
Hatai, K., 1965. Some Fish Otoliths from Northeast Honshu, Japan. Sci. Rep. Tohoku Univ. 37, 63–77.
Heber, P.D.N., Cywinska, A., Ball, S.L., R. deWaard, J., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321.
Hebert, P.D.N., Penton, E.H., Burns, J.M., Hallwachs, W., 2004. Ten species in one : DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U. S. A. 101, 14812–14817.
Henriques, R., Potts, W.M., Santos, C. V., Sauer, W.H.H., Shaw, P.W., 2014. Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current Region: Evidence of an ancient vicariant event. PLoS One 9, e87907.
Herbinson, K.T., Allen, M.J., Moore, S.L., 1999. Historical trends in nearshore croaker (family Sciaenidae) populations in southern California from 1977. South. Calif. Coast. Water Res. Proj. Annu. Rep. 2000, 253–264.
Heupel, M.R., Hueter, R.E., 2002. Importance of prey density in relation to the movement patterns of juvenile blacktip sharks (Carcharhinus limbatus) within a coastal nursery area. Mar. Freshw. Res. 53, 543–550.
Hubbs, C.L., Lagler, K.F., 1958. Fishes of the Great Lakes region (revised). University of Michigan Press, Michigan.
Huddleston, R.W., Takeuchi, G.T., 2006. A new Late Miocene species of sciaenid fish, based primarily on an in situ otolith from California. Bull. South. Calif. Acad. Sci. 105, 30–42.
Huddleston, R.W., Takeuchi, G.T., 2007. First fossil record of Totoaba Villamar 1980 (Teleostei: Sciaenidae) based upon early Miocene otoliths from California with comments on the ontogeny of the saccular otolith. Bull. South. Calif. Acad. Sci. 106, 1–15.
Iwatsuki, Y., Jawad, L.A., Al-Mamry, J.M., 2012. Johnius (Johnius) majan sp. nov., a sciaenid fish (Pisces: Sciaenidae) from Oman, Indian Ocean. Ichthyol. Res. 59, 151–155.
Jayaprakash, A.A., 1975. A record of Nibea chui Trewavas from India. Indian J. Fish. 22, 259–261.
Jokiel, P., Martinelli, F., 1992. The vortex model of coral reef biogeography. J. Biogeogr. 19, 449–458.
Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules, in: N.H., M. (Ed.), Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132.
Kasumyan, A.O., 2009. Acoustic signaling in fish. J. Ichthyol. 49, 963–1020.
Kekkonen, M., Hebert, P.D.N., 2014. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Resour. 14, 706–715.
Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
Knowles, L.L., Kubatko, L.S., 2011. Estimating species trees: an introduction to concepts and models, in: Knowles, L.L., Kubatko, L.S. (Eds.), Estimating Species Trees: Practical and Theoretical Aspects. John Wiley and Sons, pp. 1–14.
Krammer, R., Baumann, K.-H., Henrich, R., 2006. Middle to late Miocene fluctuations in the incipient Benguela Upwelling System revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeogr. Palaeocl. 230, 319–334.
Ladd, H.S., 1960. Origin of the Pacific island molluscan fauna. Am. J. Sci. 258-A, 137–150.
Ladich, F., 2004. Sound Production and Acoustic Communication, in: Von Der Emde, G., Mogdans, J., Kapoor, B.G. (Eds.), The Senses of Fish Adaptations for the Reception of Natural Stimuli. Narosa Publishing House, pp. 210–230.
Lakra, W.S., Verma, M.S., Goswami, M., Lal, K.K., Mohindra, V., Punia, P., Gopalakrishnan, A., Singh, K.V., Ward, R.D., Hebert, P., 2011. DNA barcoding Indian marine fishes. Mol. Ecol. Resour. 11, 60–71.
Lal Mohan, R.S., Trewavas, E., Whitehead, P.J.P., 1984. Sciaenidae, in: Fishers, A., Bianchi, G. (Eds.), FAO Species Identification Sheets for Fishery Purposes. Vol 4. Western Indian Ocean (Fishing Area 51). p. SCIAEN–SCIAEN Umbr 6.
Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W.-J., Nishida, M., 2013. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS One 8, e56485.
Liem, K.F., 1990. Key evolutionary innovations, differential diversity, and symecomorphosis, in: Nitecki, M.H., Nitecki, D. V. (Eds.), Evolutionary Innovations. University of Chicago Press, pp. 147–170.
Lin, L.S., Ying, Y.P., Han, Z.Q., Xiao, Y.S., Gao, T.X., 2009. AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis. Afr. J. Biotechnol. 8, 2700–2706.
Lo, P.-C., Liu, S.-H., Chao, N.L., Nunoo, F.K.E., Mok, H.-K., Chen, W.-J., 2015. A multi-gene dataset reveals a tropical New World origin and Early Miocene diversification of croakers (Perciformes: Sciaenidae). Mol. Phylogenet. Evol. 88, 132–143.
López, J.A., Chen, W.-J., Ortí, G., 2004. Esociform phylogeny. Copeia 3, 449–464.
Love, M.S., McGowen, G.E., Westphal, W., Lavenberg, R.J., Martin, L., 1984. Aspects of the life history and fishery of the white croaker, Genyonemus lineatus (Sciaenidae), off California. Fish. Bull. 82, 179–198.
Lovejoy, N.R., Albert, J.S., Crampton, W.G.R., 2006. Miocene marine incursions and marine/freshwater transitions: Evidence from neotropical fishes. J. S. Am. Earth Sci. 21, 5–13.
Lovejoy, N.R., Bermingham, E., Martin, A.P., 1998. Marine incursion into South America. Nature 396, 421–422.
Maddison, W.P., Maddison, D.R., 2011. Mesquite: A modular system for evolutionary analysis.
Malaquias, M.A.E., Reid, D.G., 2009. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla. J. Biogeogr. 36, 1760–1777.
Mata-Sotres, J. a., Lazo, J.P., Baron-Sevilla, B., 2015. Effect of age on weaning success in Totoaba (Totoaba macdonaldi) larval culture. Aquaculture 437, 292–296.
Miller, E.F., Williams, J.P., Pondella, D.J., Herbinson, K.T., 2009. Life history, ecology, and long-term demographics of queenfish. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 1, 187–199.
Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). 14 Nov. 2010, New Orleans.
Mok, H., Yu, H.-Y., Ueng, J.-P., Wei, R.-C., 2009. Characterization of sounds of the blackspotted croaker Protonibea diacanthus (Sciaenidae) and localization of its spawning sites in estuarine coastal waters of Taiwan. Zool. Stud. 48, 325–333.
Mok, H.-K., Gilmore, R.G., 1983. Analysis of sound production in estuarine aggregations of Pogonias cromis, Bairdiella chrysoura and Cynoscion nebulosus sciaenidae. B. I. Zool. Acad. Sin. 22, 157–186.
Monsch, K.A., 1998. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogr. Palaeoclim. Palaeoecol. 143, 31–50.
Mora, C., Chittaro, P.M., Sale, P.F., Kritzer, J.P., Ludsin, S.A., 2003. Patterns and processes in reef fish diversity. Nature 421, 933–936.
Myrberg Jr, A.A., 1997. Underwater sound: Its relevance to behavioral functions among fishes and marine mammals. Mar. Fresh. Behav. Physiol. 29, 3–21.
Near, T.J., Dornburg, A., Eytan, R.I., Keck, B.P., Smith, W.L., Kuhn, K.L., Moore, J.A., Price, S.A., Burbrink, F.T., Friedman, M., Wainwright, P.C., 2013. Phylogeny and tempo of diversi fication in the superradiation of spiny-rayed fishes. PNAS 110, 12738–12743.
Nelson, J.S., 2006. Fishes of the World, 4th ed. John Wiley & Sons, Inc., New Jersey, USA.
NMFS, 2009. Southeast drum and croaker fisheries, in: Our Living Oceans: Report on the Status of U.S. Living Marine Resources, 1999. U. S. Department of Commerce, NOAA Technical Memorandum, pp. 163–167.
Nolf, D., 1995. Studies on fossil otoliths - The state of the art, in: Secor, D.H., Dean, J.M., Campana, S.E. (Eds.), Recent Developments in Fish Otolith Research. Univ. of South Carolina Pr., pp. 513–544.
Nolf, D., 2003. Revision of the American otolith-based fish species: Described by Koken in 1888. Louisiana State Univ. Louisiana Geol. Surv. 12, 1–19.
Nolf, D., 2004. Otolithes de poissons aptiens du Maestrazgo (provine de Castellon, Espagne orientale). Bull. Inst. R. Sci. Nat. Belg. Sci. Terre. 74, 101–120.
Nolf, D., Aguilera, O., 1998. Fish otoliths from the Cantaure Formation (Early Miocene of Venezuela). Bull. Inst. R. Sci. Nat. Belg. Sci. Terre. 68, 237–262.
Nunoo, F.K.E., Sossoukpe, E., Adite, A., Fiogbe, E.D., 2013. Food habits of two species of Pseudotolithus (Sciaenidae) off Benin (West Africa) nearshore waters and implications for management. Int. J. Fish. Aquac. 5, 142–151.
Orrell, T.M., Carpenter, K.E., Musick, J.A., Graves, J.E., 2002. Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome b sequences. Copeia 3, 618–631.
Otero, O., Gayet, M., 1996. Anatomy and phylogeny of the Aipichthyoidea nov. of the Cenomanian Tethys and their place in the Acanthomorpha (Teleostei). N. Jb. Geol. Paläont. Abh. 202, 313–344.
Pansard, K.C.A., Gurgel, H. de C.B., Andrade, L.C. de A., Yamamoto, M.E., 2011. Feeding ecology of the estuarine dolphin (Sotalia guianensis) on the coast of Rio Grande do Norte, Brazil. Mar. Mammal Sci. 27, 673–687.
Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
Parra, G.J., Jedensjö, M., 2014. Stomach contents of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback dolphins (Sousa chinensis). Mar. Mammal Sci. 30, 1184–1198.
Patterson, C., 1964. A review of Mesozoic acanthopterygian fishes, with special Reference to those of the English Chalk. Philos. T. Roy. Soc. B 247, 213–482.
Patterson, C., 1993. An overview of the early fossil record of Acanthomorphs. B. Mar. Sci. 52, 29–59.
Paz, A., J. Crawford, A., 2012. Molecular-based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians. J. Biosci. 37, 887–896.
Pearl River Fisheries Research Institute, 1986. The Freshwater and estuaries fishes of Hainan Island. Guangdong Science and Technology Press, Guangzhou.
Peters, K.M., McMichael Jr., R.H., 1990. Early life history of the black drum Pogonias cromis (Pisces: Sciaenidae) in Tampa Bay, Florida. Northeast Gulf Sci. 11, 39–58.
Piner, K.R.& J.C.M., 2004. Age, growth and the potential for growth overfishing of spot from the Chesapeake Bay, eastern USA. Mar. Freshw. Res. 55, 553–560.
Popper, A.N., Fay, R.R., Platt, C., Sand, O., 2003. Sound detection mechanisms and capabilities of teleost fishes, in: Sensory Processing in Aquatic Environments. Springer New York, pp. 3–38.
Pringgenis, D., Susilowati, R., 2016. Highly commercial fisheries tawar fish: molecular analysis DNA mitochondrial COI gene sequence and proximate analysis from malacca Strait, Riau. J. Teknol. 2, 33–38.
Puillandre, N., Lambert, A., Brouillet, S., Achaz, G., 2012a. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877.
Puillandre, N., Modica, M.V., Zhang, Y., Sirovich, L., Boisselier, M.-C., Cruaud, C., Holford, M., Samadi, S., 2012b. Large-scale species delimitation method for hyperdiverse groups. Mol. Ecol. 21, 2671–2691.
R Core Team, 2015. R: A Language and Environment for Statistical Computing.
Rambaut, A., 1996. Se-Al: sequence alignment editor software. URL http://tree.bio.ed.ac.uk/software/seal/ (accessed 8.11.14).
Ramcharitar, J., Gannon, D.P., Popper, A.N., 2006. Bioacoustics of fishes of the family Sciaenidae (croakers and drums). T. Am. Fish. Soc. 135, 1409–1431.
Ratnasingham, S., Hebert, P.D.N., 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364.
Ree, R.H., Moore, B.R., Webb, C.O., Donoghue, M.J., 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311.
Ree, R.H., Smith, S.A., 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14.
Rosen, B.R., Smith, A.B., 1988. Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late Cretaceous to Recent, using a new method. Geol. Soc. London, Spec. Pub. 37, 275–306.
RStudio Team, 2015. RStudio: Integrated Development for R.
Sadovy, Y., Cheung, W.L., 2003. Near extinction of a highly fecund fish: The one that nearly got away. Fish Fish. 4, 86–99.
Saez, A.G., Probert, I., Geisen, M., Quinn, P., Young, J.R., Medlin, L.K., 2003. Pseudo-cryptic speciation in coccolithophores. Proc. Natl. Acad. Sci. U. S. A. 100, 7163–7168.
Santini, F., Nguyen, M.T.T., Sorenson, L., Waltzek, T.B., Lynch Alfaro, J.W., Eastman, J.M., Alfaro, M.E., 2013. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J. Evol. Biol. 26, 1003–1018.
Santos, S., Gomes, M. de F., Santos Ferreira, A.R., Sampaio, I., Schneider, H., 2013. Molecular phylogeny of the western South Atlantic Sciaenidae based on mitochondrial and nuclear data. Mol. Phylogenet. Evol. 66, 423–428.
Sardiña, P., Cazorla, A.L., 2005. Feeding interrelationships and comparative morphology of two young sciaenids co-occurring in South-western Atlantic waters. Hydrobiologia 548, 41–49.
Sasaki, K., 1989. Phylogeny of the family Sciaenidae with notes on its zoogeography (Teleostei, Perciformes). Mere. Fac. Fish. Hokkaido Univ. 36, 1–137.
Sasaki, K., 1992. Two new species of Nibea (Sciaenidae) from Northern Australia and Papua New Guinea. Jpn. J. Ichthyol. 39, 1–7.
Sasaki, K., 1996. Sciaenid fishes of the Indian Ocean (Teleostei, Perciformes). Mem. Fac. Sci. Kochi Univ. Ser. D, Biol. 16/17, 83–96.
Sasaki, K., 1997. Resurrection of two East African species of Johnius (Perciformes, Sciaenidae). Ichthyol. Res. 311–315.
Sasaki, K., 2001. Sciaenidae, in: Carpenter, K.E., Niem, V.H. (Eds.), FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Volume 5. Rome, FAO, Rome, pp. 3117–3174.
Sasaki, K., Kailola, P.J., 1988. Three new Indo-Australian species of the sciaenid genus Atrobucca, with a reevaluation of generic limit. Jpn. J. Ichthyol. 35, 261–277.
Sauer, J., Hausdorf, B., 2012. A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively. Cladistics 28, 300–316.
Schluter, D., 2000. Ecological Character Displacement in Adaptive Radiation. Am. Nat. 156, S4–S16.
Seah, Y.G., Hanafi, N., Mazlan, A.B.D.G., Chao, N.L., 2015. A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia (Perciformes: Sciaenidae). Zootaxa 3956, 271–280.
Séret, B., Opic, P., 1990. Poissons de mer de l’Ouest africain tropical, Poissons de Mer de L’ouest Africain Tropical. Initiations-Documentations techniques number 49, ORSTOM, Paris.
Shao, K.-T., 2010. Taiwan Wildlife Genetic Material Cryobank. URL http://cryobank.sinica.edu.tw (accessed 11.7.15).
Shen, S.-C., Lee, S.-C., Shao, K.-T., Mok, H.-K., Chen, C.-W., Chen, C.-T.., 1993. Sciaenidae, in: Fishes of Taiwan. Department of Zoology, National Taiwan University, Taipei, pp. 374–385.
Silberschneider, V., Gray, C.A., 2008. Synopsis of biological, fisheries and aquaculture-related information on mulloway Argyrosomus japonicus (Pisces: Sciaenidae), with particular reference to Australia. J. Appl. Ichthyol. 24, 7–17.
Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
Steininger, F.F., Rögl, F., 1979. The paratethys history. A contribution towards the Neogene geodynamics of the alpine orogene. Ann. Geol. Pays Hell 3, 1153–1165.
Stringer, G.L., 2011. Changes in the Sciaenidae during the Eocene/Oligocene as Indicated by otoliths in the Central Gulf Coast. Geol. Soc. Am. 43, 7.
Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).
Takemura, A., Takita, T., Mizue, K., 1978. Studies on the Underwater Sound—VII. B. Jpn. Soc. Sci. Fish. 44, 121–125.
Takeuchi, G.T., Huddleston, R.W., 2008. Genyonemus whistleri new species, a late Miocene sciaenid fish from California. Nat. Hist. Museum Los Angeles Cty. Sci. Ser. 41, 279–291.
Talavera, G., Dincă, V., Vila, R., 2013. Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods Ecol. Evol. 4, 1101–1110.
Tavera, J.J., Acero P., A., Balart, E.F., Bernardi, G., 2012. Molecular phylogeny of grunts (Teleostei, Haemulidae), with an emphasis on the ecology, evolution, and speciation history of new world species. BMC Evol. Biol. 12, 57.
Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E. Vanden, Worm, B., 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101.
Tolley, K.A., Groeneveld, J.C., Gopal, K., Matthee, C.A., 2005. Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar. Ecol. Prog. Ser. 297, 225–231.
Tower, R.W., 1908. The production of sound in the drumfishes, the sea‐robin and the toadfish. Ann. N. Y. Acad. Sci. 18, 149–180.
Trewavas, E., 1962. A basis for classifying the sciaenid fishes of tropical West Africa. J. nat. Hist. 5, 167–176.
Trewavas, E., 1977. The sciaenid fishes (croakers or drums) of the Indo-West-Pacific. Trans. Zool. Soc. Lond. 33, 253–541.
Vasconcellos, A.V. De, Lima, D., Bonhomme, F., Vianna, M., Solé-Cava, A.M., 2015. Genetic population structure of the commercially most important demersal fish in the Southwest Atlantic: The whitemouth croaker (Micropogonias furnieri). Fish. Res. 167, 333–337.
Vergara-Chen, C., Aguirre, W.E., González-Wangüemert, M., Bermingham, E., 2009. A mitochondrial DNA based phylogeny of weakfish species of the Cynoscion group (Pisces: Sciaenidae). Mol. Phylogenet. Evol. 53, 602–607.
Vermeij, G.J., Dudley, R., 2000. Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol. J. Linn. Soc. 70, 541–554.
Veron, J.E.N., Devantier, L.M., Turak, E., Green, A.L., Kininmonth, S., Stafford-Smith, M., Peterson, N., 2009. Delineating the Coral Triangle. Galaxea, J. Coral Reef Stud. 11, 91–100.
Vij, S., Purushothaman, K., Gopikrishna, G., Lau, D., Saju, J.M., Shamsudheen, K. V., Kumar, K.V., V.S.Basheer, Gopalakrishnan, A., Hossain, M.S., Sivasubbu, S., Scaria, V., Jena, J.K., Ponniah, A.G., Orbán, L., 2014. Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species. Front. Mar. Sci. 1, 1–13.
Vinson, C., Gomes, G., Schneider, H., Sampaio, I., 2004. Sciaenidae fish of the Caeté River estuary, Northern Brazil: Mitochondrial DNA suggests explosive radiation for the Western Atlantic assemblage. Genet. Mol. Biol. 27, 174–180.
Von Der Heydt, A., Dijkstra, H.A., 2006. Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography 21, PA1011.
Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., Hebert, P.D.N., 2005. DNA barcoding Australia’s fish species. Phil. Trans. R. Soc. B 360, 1847–1857.
Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644.
Wiens, J.J., Graham, C.H., 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Ann. Rev. Ecol. Syst. 36, 519–539.
Williams, S.T., 2007. Origins and diversification of Indo-West Pacific marine fauna: Evolutionary history and biogeography of turban shells (Gastropoda, Turbinidae). Biol. J. Linn. Soc. 92, 573–592.
Xu, D., Lou, B., Shi, H., Geng, Z., Li, S., Zhang, Y., 2012. Genetic diversity and population structure of Nibea albiflora in the China Sea revealed by mitochondrial COI sequences. Biochem. Syst. Ecol. 45, 158–165.
Xu, T., Tang, D., Cheng, Y., Wang, R., 2014. Mitogenomic perspectives into sciaenid fishes’ phylogeny and evolution origin in the New World. Gene 539, 91–98.
Yamanoue, Y., Miya, M., Doi, H., Mabuchi, K., Sakai, H., Nishida, M., 2011. Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): a mitogenomic perspective. PLoS One 6, e17410.
Yamanoue, Y., Miya, M., Inoue, J.G., Matsuura, K., Nishida, M., 2006. The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet. Syst. 81, 29–39.
Yang, Z., 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39, 105–111.
漁業署, 2016. 漁業統計年報. 漁業生產量值統計. URL https://www.fa.gov.tw/cht/PublicationsFishYear/ (accessed 6.1.16).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔