( 您好!臺灣時間:2021/04/12 21:58
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Jyun-Nai Wu
論文名稱(外文):New data processing algorithm for marine heat flow and thermal modeling for Tsan-Yao mud volcano offshore SW Taiwan
外文關鍵詞:Lister-type heat probeheat flowmud volcanothermal modelinverse algorithm
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究更並將此新方法應用在燦堯泥火山區域上的六個地熱測站列的資料處理與分析,利用熱流模擬及震測資料解釋探討此區域熱流分布特性。燦堯泥火山在過去的研究中被認為是一個活躍中的泥火山,其下方應有一相對高溫之流體自深部湧至淺部。本研究利用震測資料作為依據,建立泥火山的幾何模型,並利用利氏探針得到的海床溫度與地溫梯度作為邊界條件,以有限元素法建立起二維熱模型剖面。在本研究的假設中,發現燦堯泥火山下方的流體流速需要達到13 cm/yr向上才能夠符合觀測值,與前人所推測之結果解釋一致。

Marine heat flow surveys typically utilize Lister-type heat probes, which allow multi-penetrations to measure both temperature and thermal conductivity in situ. Over the past decade, the data processing technique of the heat probes usually use a two stages procedure with empirical constrain to overcome the shortcomings of convergent. However, the empirical constrain had never been validated by experimental data and will certainly vary with sediment type. In this study we attempt to simplify the procedure and remove the empirical part with an advantageous inversion scheme. Our algorithm has been tested on both synthetic and field data and the results show a good agreement with previous algorithm. In our study area, the Tsan-Yao mud volcano, we observed high heat flow value on the top of mud volcano by both previous and our data processing algorithm. To understand the mechanism of heat transfer in this area, we construct a 2D thermal model across the mud volcano. The model shows that there is an advection under the mud volcano and causes the high heat flow measurement; we suggest that advection should be caused by the fluid migration beneath the mud volcano. Base on some assumptions, we found that the fluid migration rate beneath the mud volcano should be 13 cm/yr upward to satisfy our heat flow measurement.

第一章、緒論 1
1-1海洋熱流探勘 1
1-2研究動機與目的 4
第二章、利氏熱探針資料量測及處理 6
2-1利氏熱探針施測過程 7
2-2利氏熱探針資料處理 9
2-2-1區域搜尋(Local search)法 11
2-2-1格點搜尋(Grid search)法 14
第三章、泥火山熱模型研究 16
3-1燦堯泥火山 16
3-2多頻道反射震測 19
3-3燦堯泥火山之熱模型 20
3-3-1反射震測與地熱資料整編 20
3-3-2 熱模型建立 22
第四章、結果與討論 26
4-1利式熱探針資料處理 26
4-1-1人工合成(synthetic)資料測試 26
4-1-2海研五號OR5-0039航次資料 31
4-1-3利氏熱探針資料處理之討論 36
4-2燦堯泥火山熱模型討論 40
4-2-1熱模型研究結果與討論 40
4-2-2流體移棲模型 42
4-2-3熱模型參數討論 44
第五章、結論 48
參考文獻 49

Barber, A. J., S. Tjokrosapoetro, and T. R. Charlton (1986), Mud Volcanoes, Shale Diapirs, Wrench Faults, and Melanges in Accretionary Complexes, Eastern Indonesia, American Association of Petroleum Geologists Bulletin, 70(11), 1729–1741.
Bear, J., and Y. Bachmat (1990), Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht.
Beardsmore, G. R., and J. P. Cull (2001), Crustal Heat Flow: A Guide to Measurement and Modelling, Cambridge University Press, England.
Bruce, R. H., M. F. Middleton, P. Holyland, D. Loewenthal, and I. Bruner (1999), Modelling of Petroleum Formation Associated with Heat Transfer due to Hydrodynamic Processes, in Coalbed Methane: Scientific, Environmental and Economic Evaluation, edited by M. Mastalerz, M. Glikson, and S. D. Golding, pp. 449–460, Springer Netherlands.
Bullard, E. (1954), The Flow of Heat through the Floor of the Atlantic Ocean, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 222(1150), 408–429, doi:10.1098/rspa.1954.0085.
Carslaw, H. S., and J. C. Jaeger (1959), Conduction of heat in solids, 2nd. Oxford University Press, London, 510p.
Chen, L., W.-C. Chi, C.-S. Liu, C.-T. Shyu, Y. Wang, and C.-Y. Lu (2012), Deriving regional vertical fluid migration rates offshore southwestern Taiwan using bottom-simulating reflectors, Marine Geophysical Research, 33(4), 379–388, doi:10.1007/s11001-012-9162-4.
Chen, L., W.-C. Chi, S.-K. Wu, C.-S. Liu, C.-T. Shyu, Y. Wang, and C.-Y. Lu (2014), Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan, Journal of Asian Earth Sciences, 92, 245–253, doi:10.1016/j.jseaes.2014.01.004.
Coleman, T. F., and Y. Li (1996), An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on optimization, 6(2), 418–445.
Conn, A. R., N. I. M. Gould, and P. L. Toint (2000), Trust Region Methods, Society for Industrial and Applied Mathematics and Mathematical Programming, United States of America.
Courtney, R. C., and R. S. White (1986), Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle, Geophysical Journal International, 87(3), 815–867, doi:10.1111/j.1365-246X.1986.tb01973.x.
Feseker, T., J.-P. Foucher, and F. Harmegnies (2008), Fluid flow or mud eruptions? Sediment temperature distributions on Håkon Mosby mud volcano, SW Barents Sea slope, Marine Geology, 247(3–4), 194–207, doi:10.1016/j.margeo.2007.09.005.
Gerard, R., M. G. Langseth, and M. Ewing (1962), Thermal gradient measurements in the water and bottom sediment of the western Atlantic, Journal of Geophysical Research, 67(2), 785–803.
Goutorbe, B., J. Poort, F. Lucazeau, and S. Raillard (2011), Global heat flow trends resolved from multiple geological and geophysical proxies, Geophysical Journal International, 187(3), 1405–1419, doi:10.1111/j.1365-246X.2011.05228.x.
Hamilton, E. L. (1980), Geoacoustic modeling of the sea floor, The Journal of the Acoustical Society of America, 68(5), 1313–1340, doi:10.1121/1.385100.
Hartmann, A., and H. Villinger (2002), Inversion of marine heat flow measurements by expansion of the temperature decay function, Geophysical Journal International, 148(3), 628–636.
Hasterok, D. (2013), A heat flow based cooling model for tectonic plates, Earth and Planetary Science Letters, 361, 34–43, doi:10.1016/j.epsl.2012.10.036.
Hyndman, R. D., E. E. Davis, and J. A. Wright (1979), The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity, Marine Geophysical Researches, 4(2), 181–205.
Jackson, M. P. A., and C. J. Talbot (1986), External shapes, strain rates, and dynamics of salt structures, Geological Society of America Bulletin, 97(3), 305–323, doi:10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2.
Jaeger, J. (1956), Conduction of Heat in an Infinite Region Bounded Internally by a Circular Cylinder of a Perfect Conductor, Australian Journal of Physics, 9(2), 167–179.
Kopf, A. J. (2002), Significance of Mud Volcanism, Reviews of Geophysics, 40(2), 1005, doi:10.1029/2000RG000093.
Lee, W. H. K., and S. Uyeda (1965), Review of Heat Flow Data, in Terrestrial Heat Flow, edited by W. H. K. Lee, pp. 87–190, American Geophysical Union.
Lees, C. H. (1910), On the Shapes of the Isogeotherms under Mountain Ranges in Radio-Active Districts, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 83(563), 339–346.
Lister, C. R. B. (1970), Measurement of in situ sediment conductivity by means of a Bullard-type probe, Geophysical Journal International, 19(5), 521–532.
Lister, C. R. B. (1979), The pulse-probe method of conductivity measurement, Geophysical Journal International, 57(2), 451–461.
Louden, K. E., and J. A. Wright. (1989), Marine heat flow data: a new compilation of observations and brief review of its analysis, in Handbook of seafloor heat flow. CRC, pp. 3–67, Boca Raton.
Mancktelow, N. S., and B. Grasemann (1997), Time-dependent effects of heat advection and topography on cooling histories during erosion, Tectonophysics, 270(3–4), 167–195, doi:10.1016/S0040-1951(96)00279-X.
Middleton, M. F. (1994), Determination of Matrix Thermal Conductivity from Dry Drill Cuttings, American Association of Petroleum Geologists Bulletin, 78(11), 1790–1799.
Milkov, A. V. (2000), Worldwide distribution of submarine mud volcanoes and associated gas hydrates, Marine Geology, 167(1–2), 29–42, doi:10.1016/S0025-3227(00)00022-0.
Moré, J. J., and D. C. Sorensen (1983), Computing a trust region step, Society for Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, 4(3), 553–572.
Pollack, H. N., S. J. Hurter, and J. R. Johnson (1993), Heat flow from the Earth’s interior: Analysis of the global data set, Reviews of Geophysics, 31(3), 267–280, doi:10.1029/93RG01249.
Sclater, J. G., D. Hasterok, B. Goutorbe, J. Hillier, and R. Negrete (2014), Marine Heat Flow, in Encyclopedia of Marine Geosciences, edited by J. Harff, M. Meschede, S. Petersen, and J. Thiede, pp. 1–16, Springer Netherlands, Dordrecht.
Shyu, C., Y. Chen, S. Chiang, and C. Liu (2006), Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 17(4), 845.
Shyu, C.-T., and H.-I. Chang (2005), Determination of seafloor temperature using data from high-resolution marine heat probes, Terrestrial Atmospheric and Oceanic Sciences, 16, 137–153.
Villinger, H., and E. E. Davis (1987), A new reduction algorithm for marine heat flow measurements, Journal of Geophysical Research, 92(B12), 12846–12856, doi:10.1029/JB092iB12p12846.
Yamano, M., S. Uyeda, Y. Aoki, and T. H. Shipley (1982), Estimates of heat flow derived from gas hydrates, Geology, 10(7), 339–343, doi:10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2.
林殿順(2010),台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(3/4):含天然氣水合物地層的構造與沉積特徵研究,經濟部中央地質調查所報告第99-25-F 號,台北,102 頁。

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔