(3.227.208.0) 您好!臺灣時間:2021/04/20 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧翊維
研究生(外文):Yi-Wei Lu
論文名稱:利用海床底質回聲影像探討臺灣西南海域沉積物液化對海床穩定性影響
論文名稱(外文):Chirp Sonar Images on Liquefaction and Their Implications on Seafloor Stability Offshore SW Taiwan
指導教授:劉家瑄劉家瑄引用關係蘇志杰
指導教授(外文):Char-Shine LiuChih-Chieh Su
口試委員:許樹坤林殿順陳松春
口試委員(外文):Shu-Kun HsuAndrew Tien-Shun LinSong-Chuen Chen
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:海床不穩定塊體運動液化地層底質回聲剖面三維海床底質聲納資料
外文關鍵詞:seafloor instabilitymass movementliquefied stratachirp sonar profile3D chirp sonar image
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臺灣西南海域因海底重力流極端事件導致一系列的海底電纜斷裂,並造成嚴重的經濟損失,本研究結合地球物理與地球化學方法,探討導致海床不穩定的可能原因,並針對臺灣西南海域陸棚、陸坡區,評估易發生海底重力流之敏感區分布。本論文以2006年12月26日屏東地震於枋寮峽谷引發重力流之事件為例,利用高解析水深、海床底質回聲剖面以及反射震測資料,藉由比對事件前後地形與地層特徵之變化,先確認該事件所引發之塊體運動發生區域,再探討為何地震後會在該處誘發海床崩塌。研究結果顯示,崩塌區域海床下之地層並未有明顯的斷層、褶皺或貫入體構造,進而可直接引發海床崩塌;反而在海床底質回聲剖面資料中發現崩塌區域淺部地層中,廣泛存在一層聲波反白透明層,再搭配高解析三維海床底質回聲影像的分析,發現該透明層與沉積物發生崩塌有所關連。藉由該透明層之地物特徵以及箱型岩心分析結果,透明層之發生應與地層液化有關,而地層液化則是導致海床不穩定之關鍵因素。因此本研究提出一套由淺部沉積層中液化地層引發海床崩塌發生的機制:海床下的某特定沉積層在流體的充填下,使得該層的孔隙水壓逐漸上升,同時有效應力下降,當上覆沉積物給予的荷重較少時,此沉積層容易形成不穩定的狀態,最後在一定規模地震的擾動下,使其有效應力歸零,造成沉積層發生液化。而由於液化地層可藉由底質回聲剖面中的透明層辨識,所以檢視整個高屏棚坡區域回聲剖面中的透明層分布,顯示發現顯示除了枋寮峽谷頭部東側區域外,高屏峽谷與枋寮峽谷之間的陸棚區域也有不少潛在發生液化的海床不穩定區域,其中又以枋寮峽谷頭部西北側分布最為密集。本研究認為這些富含流體的沉積層,在有適當的誘發機制情況下,例如2006年的屏東地震事件,容易使得這些含有流體且處於不穩定狀態的沉積層受到擾動而發生液化,導致海床崩塌而引發重力流。

Large scale submarine cable breakages often occur along the submarine canyons offshore southwest Taiwan after some extreme gravity flow events caused significant economic losses. This study analyzes both marine geophysical and geological/geochemical data to investigate the possibly causes of seafloor instability, and identify the regions prone to submarine landslides that trigger submarine gravity flows in the area off southwest Taiwan. Taking Pingtung Earthquake as an example, this earthquake occurred on 26 December 2006, which triggered gravity flow in the Fangliao Submarine Canyon. By analyzing high-resolution bathymetry, chirp sonar, and reflection seismic data to search for the locations of seafloor failures that caused an extreme gravity flow event, and to investigate why this event occurred in that region. Our study shows that there are not obvious active faults, folds, and diapers to trigger the seafloor failures in our study region. However, from chirp sonar profiles, an acoustic transparent layer is widely distributed in the shallow substrata in the study region. We also construct a 3D chirp sonar image to reveal the distribution of this layer, which we think is closely linked to the seafloor failures. Based on the analyses results of box core data and geophysical characteristics of the transparent layer, we suggest that sediment liquefaction caused the transparent layer, and liquefaction is the major factor of seafloor instability in our study area. We establish a model to show how the liquefied layer affects the shallow substrata and causes seafloor failures: when a layer is supplied with large amount of fluid in the shallow substrata, pore water pressure increases and effective stress decreases in the sediments. With inadequate loading pressure from the sediments above, the fluid saturated layer is easy to become unstable. When a large earthquake hits the region with unstable seafloor strata, the effective stress in the fluid over-saturated substrata will decrease to zero, and cause the liquefaction. Because the liquefied strata can be identified on chirp sonar profiles as a transparent layer, we examine all the chirp sonar profiles in the Gaoping shelf and slope region to map this layer. Our investigation results show that there are many potential liquefaction regions between the Gaoping and Fangliao Submarine Canyons in the shelf, and the area near the northwestern side of the Fangliao Submarine Canyon is the most unstable region. In conclusion, we suggest that the layer with fluid could be easily liquefied when an appropriate events happen, such as 2006 Pingtung Earthquake.

致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 序論 1
1.1前言 1
1.2研究動機與目標 1
1.3臺灣西南海域海底峽谷介紹 5
1.4研究方法 9
1.5論文架構 9
第二章 研究背景介紹 12
2.1 研究區域重力流事件 12
2.2土壤液化 15
2.2.1液化的形成 15
2.2.2液化的條件 15
2.2.3液化對人類的影響 16
第三章 資料收集與處理 19
3.1水深資料 19
3.1.1水深資料收集 19
3.1.2水深資料處理 20
3.2震測資料 22
3.2.1震測資料收集 22
3.2.2震測資料處理 22
3.3海床底質回聲剖面 28
3.3.1海床底質回聲剖面資料收集 28
3.3.2海床底質回聲剖面資料處理 29
3.4三維海床底質回聲影像 40
3.4.1三維海床底質回聲影像資料收集 40
3.4.2三維海床底質回聲影像資料處理 41
第四章 研究觀察與討論 51
4.1主要研究區選定及崩塌特徵 51
4.2震測剖面觀察 56
4.3海床底質回聲影像觀察 62
4.4岩心資料分析 75
4.5崩塌原因分析 79
第五章 崩塌事件發生機制 82
5.1枋寮峽谷區域海底液化引發海床崩塌機制 82
5.2臺灣西海海域潛在海底液化區域描繪 85
5.2.1潛在海底液化區域討論 85
5.2.2潛在海底液化區域描繪 85
第六章 結論 87
參考文獻 89

中文文獻
李佳芳 (2012) 應用震測屬性探討台灣西南海域永安海脊地區天然氣水合物之分布與特性。國立國立臺灣大學海洋研究所碩士論文,共72頁。
沈俊諺 (2015) 三維底質回聲影像技術建立:以永安海脊與下枋寮盆地為例。國立國立臺灣大學海洋研究所碩士論文,共73頁。
夏培正 (2013) 臺灣西南海域重力流引發海底地質災害事件之研究。國立國立臺灣大學理學院海洋研究所碩士論文,共92頁。
張亦慧 (2009) 台灣西南海域枋寮海底峽谷的沉積/形貌特徵與沉積物散佈。國立國立臺灣大學海洋研究所碩士論文,共50頁。
陳文山、宋時驊、吳樂群、徐澔德、楊小青 (2004) 末次冰期以來台灣海岸平原區的海岸線變遷。考古人類學刊,第62期,40-55頁。
陳松春 (2014) 臺灣南部恆春西台地附近海域之地質構造研究。經濟部中央地質調查所103年度自行研究計畫報告,第10306號,共45頁。
陳銘鴻 (2002) 土壤液化成因、災害與復健。台灣之活動斷層與地震災害研討會,107-123頁。
許鶴瀚 (2013) 從震測資料探討臺灣西南及東北海域沉積物散布系統。國立國立臺灣大學海洋研究所博士論文,共166頁。
彭于珊 (2012) 臺灣西南海域永安海脊熱流變化對天然氣水合物穩定帶的影響。國立國立臺灣大學海洋研究所碩士論文,共78頁。
廖士瑋 (2010) 應用三維反射震測技術調查臺灣西南海域天然氣水合物系統。國立國立臺灣大學海洋研究所碩士論文,共84頁。
鄭屹雅 (2012) 臺灣西南海域沉積物重力流引發之海底電纜斷裂事件。國立國立臺灣大學海洋研究所碩士論文,共98頁。
蔡帛軒 (2014) 台灣西南海域極端事件引發海底地質災害對有機碳埋藏的影響。國立國立臺灣大學海洋研究所碩士論文,共71頁。

英文文獻
Ashton, C. P., Bacon, B., Mann, A., Moldoveanu, N., Deplante, C., Dickilreson, Sinclair, T., Redekop, G., (1993) 3D seismic survey design. The Leading Edge, 12(11), 1094-1117.
Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T., Taylor, C. A. (2011) Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618-1628.
Cable, J. E., Burnett, W. C., Chanton, J. P., Weatherly, G. L. (1996) Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth and Planetary Science Letters, 144(3), 591-604.
Carter, L., Burnett, D., Drew, S., Hagadorn, L., Marle, G., Bartlett-McNeil, D., Irvine, N. (2009) Submarine Cables and the Oceans - connecting the world. UNEP-WCMC biodiversity Series 31.ICPC/UNEP/UNEP-WCMC, 64pp.
Carter, L., Milliman, J. D., Talling, P. J., Gavey, R., Wynn, R. B. (2012) Near‐synchronous and delayed initiation of long run‐out submarine sediment flows from a record‐breaking river flood, offshore Taiwan. Geophysical Research Letters, 39, L12603.
Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S., Lee, Y. W. (2014) Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214.
Chiang, C. S., Yu, H. S. (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80, 199-213.
Chiang, C. S., Yu, H. S., Noda, A., TuZino, T., Su, C. C. (2012) Avulsion of the Fangliao submarine canyon off southwestern Taiwan as revealed by morphological analysis and numerical simulation. Geomorphology, 117, 26-37.
Damuth, J. (1980) Use of high-frequency (3.5–12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: a review. Marine Geology, 38, 51–75.
Dugan, B. (2015) Exploring Submarine Mass Failures with Physical Experiments and Numerical Models. 2015 AGU Fall Meeting.
Gutowski, M., Bull, J., Henstock, T., Dix, J., Hogarth, P., Leighton, T. White, P. (2002) Chirp sub-bottom profiler source signature design and field testing. Marine Geophysical Researches, 23, 481-492.
Hale, R. P., Nittrouer, C. A., Liu, J. T., Keil, R. G., Ogston, A. S. (2012) Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan. Marine Geology, 326, 116-130.
Hazen, A. (1918) A study of the slip in the Calaveras Dam. Engineering News Record, 81(26), 1158-1164.
Heezen B. C., Ewing M. (1952) Turbidity currents and submarine slumps, and the 1929 Grand banks earthquake. American Journal of Science, 250, 849-873.
Holmes, C. W. (1998) Short-lived isotopic chronometers - A means of measuring decadal sedimentary dynamics. Retrieved June 24, 2012. From http://fl.water.usgs.gov/PDF_files/fs73_98_holmes.pdf.
Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. B., Ku, C. Y., Sibuet, J. C. (2008) Turbidity currents, submarine landslides and the 2006. Terrestrial Atmospheric and Oceanic Sciences, 19, 767-772.
Klauder, J. R., Price, A. C., Darlington, S., Albersheim, W. J. (1960) The theory and design of chirp radars. The Bell System Technical Journal, 39, 745-808.
Liu, C. S., Lundberg, N., Reed, D. L., Huang, Y. L. (1993) Morphological and seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111, 93-108.
Su, C. C., Tseng, J. Y., Hsu, H. H., Chiang, C. S., Yu, H. S., Lin, S., Liu, J. T. (2012), Records of submarine natural hazards off SW Taiwan. Geological Society, London, Special Publications, 361(1), 41-60.
Vanneste, M., Sultan, N., Garziglia, S., Forsberg, C. F., L''Heureux, J. S. (2014) Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations. Marine Geology, 352, 183-214.
Yamazaki, Y., Cheung, K. F. (2011) Shelf resonance and impact of near‐field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38(12), L12605.
Yu, H. S., Wen, Y. H. (1992) Physiographic characteristics of the continental margin off southwestern Taiwan. Journal of the Geological Society. China 36, 337-351.
Yu, H. S., Chiang, C. S. (1997) Kaoping Shelf: morphology and tectonic significance. Journal of Asian Earth Sciences, 15(1), 9-18.

網路資料
NOAA, The National Oceanic and Atmospheric Administration. 美國國家海洋和大氣管理局水文測量技術網頁。http://www.nauticalcharts.noaa.gov/mcd/learnc_surveytechniques.html

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔