跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張世欣
研究生(外文):Shih-Shin Chang
論文名稱:李宋豬先天眼球缺陷及基因型鑑定研究
論文名稱(外文):Study on congenital eye defects and SNP genotyping inLee-Sung pig
指導教授:朱有田朱有田引用關係姜延年姜延年引用關係
指導教授(外文):Yu-Ten JuYan-Nian Jiang
口試委員:黃木秋
口試委員(外文):Mu-Chiou Huang
口試日期:2016-08-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:迷你豬李宋豬眼球發育
外文關鍵詞:miniature pigLee-Sung pigeye development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先天性眼球缺陷包含了:無眼症、小眼症及貓眼症,是造成人類幼年失明的主因之一。在美國,每十萬人約有三人會受到此類眼球缺陷疾病的影響。包括了小鼠、斑馬魚及爪蟾等的許多模式動物可被用來研究先天性眼球缺陷的發生機制,然而這些因其體型、解剖、生理以及遺傳距離上的差異,並無法忠實的模擬發生於人類上的疾病。而豬(Sus scrofa)是除了非人類靈長類之外,與人類有許多相同之處的大型哺乳類動物,因此豬便可能是個良好的模式動物來進行眼球發育的研究。自1983年起在臺灣開發了可供作為生醫研究用途的小型豬種:李宋豬,然而在2008年於李宋豬保種族群中發現了自發性的眼球缺陷,包括了:無眼症、小眼症與無虹膜症。這些帶有眼球缺陷的李宋豬提供了一個新穎的模式動物來進行眼球發育的研究。因此本試驗的目的為建立穩定帶有眼球缺陷的李宋豬族群,以及篩選調控其缺陷機制的候選基因。
  為了建立眼球缺陷之李宋豬族群,本試驗以雙眼無眼症之公母豬進行配種,結果顯示其雜交後代有超過五成帶有無眼症缺陷(第一胎:54.5%,第二胎:55.6%)。以正常族群與眼球缺陷族群進行系譜分析發現,這些眼球缺陷為遺傳性狀,且可能受到數個基因的調控。為了要瞭解不同缺陷個體的眼球構造差異,以核磁共振掃瞄正常、單眼無眼症以及雙眼無眼症之李宋豬頭部影像,結果顯示眼球缺陷個體完全喪失了發育出完整眼球的能力,顯示此缺失應發生於眼球發育的初期。此外單眼無眼症個體雖仍發育出一側眼球,但其眼球大小以及晶狀體的結構也受到了缺損。調控眼球發育的基因在不同物種間具有相當高的保留性,在人類及其他物種中,已有許多突變位點已被證實與眼球缺陷有關,本試驗檢測了14個與先天性眼球缺陷有關之基因,包括了BMP4、BMP7、HES1、LHX2、MAB21L2、MITF、OTX2、PAX2、PAX6、RAX、SHH、SOX2以及VSX2,然而於李宋豬中卻未發現與眼球缺陷相關的突變位點。為了獲得尚未被發現之位點,本試驗挑選包括正常、雙眼無眼症、雙眼無虹膜症、單眼無眼症單眼無虹膜症、小眼無虹膜症等五個性狀個體進行次世代高通量定序,並透過比較不同個體之全基因序列,獲得不同個體間的SNP位點。序列資料分析分為兩個部分,第一,將定序結果組裝成完整的全基因組序列;第二,將四個眼球缺陷個體與正常個體之序列進行比對,結果顯示總共得出185、247、207以及195個會造成胺基酸序列改變的SNP。並挑選來自雙眼無眼症及單眼無眼症單眼無虹膜症之個體的SNP進行驗證,總共挑選出88個SNP位點,共55個基因。目前已完成20個基因,但並無與缺陷性狀相關的位點產生。
  總上所述,透過本試驗之配種策略,本研究室已建立帶有眼球缺陷之李宋豬族群,包括了無眼症、小眼症以及無虹膜症。但影響其缺陷產生的基因仍需要進一步的釐清。


Congenital eye malformations, including microphthalmia, anophthalmia and coloboma (MAC), act as certain major causes in human blindness. These diseases affected 3 per 100,000 newborns in the United States. Many animal models such as rodents, xenopus and zebra fish were used for investigating the pathogenesis of MAC. However, these animal models are not faithfully to mimic the relevant human diseases due to its body size, physiology, anatomy or genetic differences between human. Apart from non-human primates, Pig (Sus scrofa) is one of the large mammals that share many similarities with human. Therefore, pigs may serve as an ideal alternative model for eye development study. In Taiwan, a miniature breed called Lee-Sung pig (LS pig) was developed as laboratory model since 1983. LS pigs with spontaneous eye defects, including anophthalmia and aniridia from one family were identified from the conserved population in 2008. These defected LS pig provides a novel mammal model for eye development research. The aim of this study was to establish a population of Lee-Sung pigs with microphthalmia and anophthalmia, and to screen candidate genes that control eye development.
  In order to establish a population of LS pigs with eye defects, a sow with bilateral anophthalmia (An/An) and bred with a wild type boar and 4 female and 1 male LS pigs were delivered. One female LS pig showed aniridia (Ani/Ani). Full-sib mating of the pigs was carried out and a male LS pig with bilateral anophthalmia (An/An) was obtained. We then crossed two LS pigs with anophthalmia. The result showed that more than 50% of their offspring expressed eye defects (parity 1: 54.5%, parity 2: 55.6% in anophthalmia). With pedigree analysis and compare with control herd, the defects in LS pig were an inherited trait and controlled by a few genes. To understand the eye structure between different phenotype of LS pigs, the Magnetic Resonance Imaging (MRI) was conducted from three LS pigs, including wild type, bilateral and unilateral anophthalmia. Results showed that defected LS pig lost the ability to form a normal eye structure and this defect might occur in early stage of eye development. Moreover, the size of the eye ball and structure of lens might be disrupted in a unilateral anophthalmia LS pig. Genes that control the eye development are highly conserved among species, as many mutations in genes which are critical for eye development were identified in human or some other species. The SNPs related to MAC from twelve candidate genes, including BMP4, BMP7, HES1, LHX2, MAB21L2, MITF, OTX2, PAX2, PAX6, RAX, SHH, SOX2 and VSX2 in LS pigs were examined by PCR and Sanger sequencing. However, the published SNP sites were not relevant to MAC phenotypes in LS pig. In order to obtain the novel SNP sites that relate to LS pig MAC defects, five LS pigs with different phenotypes were chosen (wild type, AN/AN, Ani/AN, Ani/Ani and M/M+Ani respectively) to perform the Next-Generation Sequencing (NGS). Through NGS, whole genome of LS pig was obtained from this large-scale sequencing, and the SNP sites between different phenotypes could be discovered. The sequencing data analyses were separated into two parts, one was to assemble the reads into complete LS pig genome, and the other was to map the reads from five LS pigs to reference genome. Non-synonymous SNPs were called from four defected LS pigs (185, 247, 207 and 195 SNPs; 124, 155, 150 and 128 genes respectively). Totally, 144 candidate genes were selected, and assigned into different gene clusters which include JAK-STAT pathway (7 genes respectively), immune system process (27 genes respectively) and 26 genes contribute to MAC diseases. Further validation of these SNPs will examine by PCR and Sanger sequencing to confirm the accuracy of these sites.
  Taking together, through our breeding strategy, we have established a population with eye defects which include anophthalmia, microphthalmia and aniridia LS pigs stably. But the genes from LS pig involved in MAC need to be explored in the next step.


中文摘要…………………………………………………………...……………..……Ⅰ
英文摘要………………………………..………………………………..…………….Ⅲ
第一章 前言………………………………………………………...……..………….…1
第二章 文獻探討………………………………………………………………………..2
第一節 豬模式動物……………………………………………...……...………2
(一)以家豬做為生醫研究之模式動物……………………………………..2
(二)小型豬種於生物醫學領域之使用……………………………………..2
第二節 臺灣本地開發之小型豬種……………………………….……...……..3
(一)蘭嶼豬…………………………………………………………………..3
(二)李宋豬…………………………………………….…………………….4
(三)眼球發育缺陷李宋豬……………………………………………..……4
第三節 眼球構造………………………………………………………….....….5
(一)眼球外層………………………………………………………………..5
(二)眼球中層…………………………………………………………….….6
(三)眼球內層……………………………………………………………..…6
(四)眼球內容物…………………………………………………………..…7
第四節 眼球發育與調控機制……………………………….…………...….….8
(一)眼球發育………………….…………………………………...………..8
(二)眼球發育調控……………………………..............................................8
第五節 基因分型……………………………………………………...………...9
第三章 材料方法……………………………………………..……….…………..…...10
第一節 建立穩定表現眼球缺陷之李宋豬族群…………….…………...…....10
第二節 眼球缺陷李宋豬族群遺傳樣本之收集…………….…………...…....10
(一)眼球缺陷李宋豬族群之組織樣本收集………………………...….…10
(二)眼球缺陷李宋豬族群之血液樣本收集................................................10
第三節 藉由核磁共振掃描不同缺失李宋豬頭部影像……….………......….11
第四節 李宋豬基因組DNA之萃取…………….………………...…….…….11
(一)組織樣本基因組DNA之萃取………………………….………….…12
(二)血液樣本基因組DNA之萃取..............................................................12
第五節 分析不同眼球缺失李宋豬之眼球發育相關基因…….…...…………13
(一)李宋豬之PAX6、SOX2與OTX2基因引子設計………………....…13
(二)以聚合酶鏈連鎖反應增幅李宋豬PAX6、SOX2與OTX2基因序列…
………………………………………………….………………………13
(三)定序及序列整理與比對……………….……………………...………14
第六節 以次世代高通量定序進行李宋豬全基因組解序……...................….15
(一)樣本選擇與基因組DNA抽取…………………………………..........15
(二)全基因組定序流程……………………………………………………15
(三)全基因組定序資料分析……………….……………………...………16
(四)單一核苷酸多型性位點分析………………………...………….……16
第四章 結果………………………………………………………...………………….17
第一節 眼球缺陷李宋豬族群之建立………………………………....………17
第二節 藉由核磁共振掃瞄李宋豬頭部影像,釐清正常與眼球缺陷個體之眼
球構造…………………………...…………….……………....………18
第三節 分析不同眼球缺陷李宋豬之眼球發育相關基因……...…..……...…18
第四節 藉由次世代高通量定序分析眼球缺陷李宋豬基因組序列…………19
第五章 討論……………………………………………………………………………21
第一節 李宋豬眼球缺陷之遺傳………………………...……………..…...…21
第二節 李宋豬眼球構造之分析………………………...……………..…...…21
第三節 眼球發育相關基因之分析………………………...…………..…...…22
第六章 結論……………………………………………………………………………23
參考文獻……………………………………………………………………………….42
作者小傳……………………………………………………………………………….46
附錄…….………………………………………………………………………...…….47
附錄1李宋豬眼球缺陷個體之外觀………………………………………….47

附錄2美國生物資訊中心(NCBI)所公布之豬SOX2、OTX2及PAX6基因
結構…………………………………………………………………….48
附錄3挑選不同眼球缺陷李宋豬進行全基因組解序……………………….49
附錄4進行全基因組解序個體所讀取序列之基礎資料…………………….50
附錄5進行全基因組解序個體所得到reads的比對率………………..…….51
附錄6以正常李宋豬序列做對照,比對出不同缺陷個體中所帶有之SNP位
點及基因數…………………………………………………………….52
附錄7挑選進行SNP位點驗證的正常以及無眼症個體………………...….53
附錄8自AN/AN個體所篩選出欲進行驗證之SNP位點及基因…….….....54
附錄9自Ani/AN個體所篩選出欲進行驗證之SNP位點及基因….……….55
附錄10在AN/AN與Ani/An兩個個體所共有之欲進行驗證之SNP位點及
基因…………………………………………………………..……..….57


李登元、宋永義、劉瑞珍。1976。小型豬選育 I. 臺灣省本地小耳種豬性能之初步
觀察報告。中畜會誌 5(1-2):109-112。

李登元、宋永義、劉瑞珍。1977。小型豬選育 II. 本省小型豬近親配種之近親系選
拔(續)。中畜會誌 9(3):153 -156。

李登元、宋永義。1979。小型豬選育 III. 本省小耳種豬自飼與手飼之生長發育比
較。中畜會誌 6(3-4):1-5。

李登元、宋永義、黃添美。1982。小型豬選育 V. 本省小耳種豬近親配種之近親
系選拔(續)。中畜會誌 11(1-2):41-44。

李新華、柯泰全、江建男、陳錫評。2013。驗光學:眼鏡驗光與加工職業技能基
礎教程。台北:新文京。

Andley, U. P. 2006. Crystallins in the eye: function and pathology. Prog. Retin. Eye
Res. 26(1):78-98.

Chou, C. M., C. Nelson, S. A. Tarlé, J. T. Pribila, T. Bardakjin, S. Woods, A.
Schneider, and T. Glaser. 2015. Biochemical basis for dominant inheritance, variable penetrance, and material effects in RBP4 congenital eye disease. Cell 161(3):634-646.

Chow, R. L., and R. A. Lang. 2001. Early eye development in vertebrates. Annu. Rev.
Cell Dev. Biol. 17:255-296.



Guruge, K. S., M. Noguchi, K. Yoshioka, E. Yamazaki, S. Taniyasu, M. Yoshioka, N.
Yamanaka, M. Ikezawa, N. Tanimura, M. Sato, N. Yamashita, and H. Kawaguchi. 2016. Microminipigs as a new experimental animal model for toxicological studies: Comparative pharmacokinetics of perfluoroalkyl acids. J. Appl. Toxicol. 36:68–75.

Hale, F. 1933. Pigs born without eye balls. J. Hered. 24:105-106.

Hingorani, M., I. Hanson, and V. van Heyningen. 2012. Aniridia. Eur. J. Hum. Genet.
20:1011-1017.

Jaenisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: how the
genome integrates intrinsic and environmental signals. Nat. Genet. 33:245-254.

Kuzmuk, K. N., and L. B. Schook. 2011. Pigs as a model for biomedical sciences. M. F.
Rothchild, and A. Ruvinsky (Eds.), The genetics of the pig. CAB International Wallingford. pp. 426-444.

Levene, M. J., J. Korlach, S. W. Turner, M. Fouquet, H. G. Craighead, and W. W.
Webb. 2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682-686.

Lunney, J. K. 2007. Advances in swine biomedical model genomics. Int. J. Biol. Sci.
3(3):179-184.

McCarthy, A. 2010. Third generation DNA sequencing: pacific bioscience’s single
molecule real time technology. Chem. Biol. 17(7):675-676.

Meek, K. M., and C. Knupp. 2015. Corneal structure and transparency. Prog. Retin.
Res. 49:1-16.


Miyoshi, N., M. Horiuchi, Y. Inokuchi, Y. Miyamoto, N. Miura, S. Tokunaga, M.
Fujiki, Y. Izumi, H. Miyajima, R. Nagata, K. Misumi, T. Takeuchi, A. Tanimoto, N. Yasuda, H. Yoshida, and H. Kawaguchi. 2010. Novel microminipig model of atherosclerosis by high fat and high cholesterol diet, established in Japan. In. Vivo. 24:671-680.

Moritomo, Y., O. Koga, H. Miyamoto, and T. Tsuda. 1995. Congenital anophthalmia
with caudal vertebral anomalies in Japanese brown cattle.J. Vet. Med. Sci. 57(4):693-696.

Morrison, D., D. FitzPatrick, I. Hanson, K. Williamson, V. van Heyningen, B. Fleck, I.
Jones, J. Chalmers, and H. Campbell. 2002. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J. Med. Genet. 39:16-22.

Nickla, D. L., and J. Wallman. 2010. The multifunction of choroid. Prog. Retin. Eye
Res. 29(2):144-168.

Nunoya, T., K. Shibuya, T. Saitoh, H. Yazawa, K. Nakamura, Y. Baba, and T. Hirai.
2007. Use of miniature pig for biomedical research, with reference to toxicologic studies. J. Toxicol. Pathol. 20:125-132.

Patten, B. M. 1953. Embryology of the pig. 3rd. ed. New York: Blakiston.

Reis, L. M., and E. V. Semina. 2015. Conserved genetic pathways associated with
microphthalmia, anophthalmia, and coloboma. Birth defects Res. C 105:96-113.

Robert, L. D. 1948. Microphthalmia in swine. J. Hered. 39(5):146-148.

Sanchez, I., R. Martin, F. Ussa, and I. Fernandez-Bueno. 2011. The parameter of the
porcine eyeball. Graef. Arch. Clin. Exp. 249:475-482.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. 74:5463-5467.

Schomberg, D. T., A. Tellez, J. J. Meudt, D. A. Brady, K. N. Dillon, F. K. Arowolo, J.
Wicks, S. D. Rousselle, and D. Shanmuganayagam. 2016. Miniature swine for preclinical modeling of complexities of human disease for translational scientific discovery and accelerated development of therapies and medical devices. Toxicol. Pathol. 44(3):299-314.

Schook, L. B., T. V. Collares, K. A. Darfour-Oduro, A. K. De, L. A. Rund, K. M.
Schachtschneider, and F. K. Seixas. 2015. Unraveling the swine genome: implications for human health. Annu. Rev. Anim. Biosci. 3:219-244.

Shendure, J., and H. Ji. 2008. Next-generation DNA sequencing. Nat. Biotechnol.
26:1135-1145.

Silver, D. M., and H. A. Quigley. 2010. Iris structure, aqueous flow, and glaucoma risk.
J. Hopkins Apl. Tech. D. 28:224-225.

Skalicky, S. E., A. J. White, J. R. Grigg, F. Martin, J. Smith, M. Jones, C. Donaldson, J.
E. Smith, M. Flaherty, and R. V. Jamieson. 2013. Microphthalmia, anophthalmia, and coloboma and associated ocular and systemic features: understanding the spectrum. JAMA Ophthalmol. 131(12):1517-1524.

Swamynathan, S. K. 2013. Ocular surface development and gene expression. J.
Ophthalmol. 2013:103947.

Wang, S., Y. Liu, D. Fang, and S. Shi. 2007. The miniature pig: a useful large animal
model for dental and orofacial research. Oral Dis. 13(6):530-537.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top