跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭玉婕
研究生(外文):Yu-Chieh Cheng
論文名稱:Lactobacillus rhamnosus GG 對於食源性肥胖小鼠之腸道菌相調節、體內瘦體素敏感度度與能量量代謝的影響
論文名稱(外文):Effect of administration of Lactobacillus rhamnosus GG on gutmicrobiota, leptin sensitivity and energy metabolism indiet-induced obesity mice
指導教授:劉嚞睿
口試委員:鄭光成劉啟德陳明汝陳彥伯
口試日期:2016-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:肥胖瘦體素益生菌鼠李糖桿菌腸道微生物次世代定序
外文關鍵詞:obesityleptinprobioticsLactobacillus rhamnosus GGgut microbiotanext-generation sequencing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:859
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肥胖現今已成為全球公共衛生中一大議題,且與代謝症候群及台灣十大死因呈高度相關。瘦體素(leptin)由脂肪細胞分泌,能夠刺激腦部下視丘(hypothalamus)產生飽足感,在腦部發揮抑制食慾的功能。雖然肥胖者瘦體素濃度普遍較高,但因肥胖者的瘦體素受器敏感度降低,產生瘦體素抗性(resistance),故無法依靠瘦體素減低熱量攝取而降低體重。Suppressor of cytokine signaling(SOCS)蛋白為瘦體素的負調控劑,它透過抑制signal transducer and activator of transcription-3(STAT3)的磷酸化來避免下視丘中瘦體素濃度過高。鼠李糖乳桿菌(Lactobacillus rhamnosus GG, LGG)會參與調控SOCS3表現。本實驗目的為探討LGG與宿主之間能量代謝的關係。本研究使用八周齡C57BL/6J品系公鼠,隨機分成四組後,餵飼高脂飼料誘導肥胖與瘦體素抗性,其中兩組每日管餵鼠李糖乳桿菌108與1010 CFU,連續餵食10周後,體重與攝食量並無顯著差異,肝臟切片顯示給予LGG能夠預防高脂飲食所造成的脂肪肝。餵食10周後以腹腔注射人工瘦體素,並發現LGG能夠提高瘦體素敏感度,在測量下視丘中SOCS3之後,給予高劑量LGG小鼠,注射食鹽水之後,SOCS3表現低;在注射人工瘦體素之後,SOCS3表現量立即升高,表示LGG會使下視丘仍對於瘦體素保持高度敏感。迴腸組織切片顯示L. rhamnosus GG的給予,能夠使小腸腔內絨毛保持長度,絨毛長度與腺窩比例保持於健康狀態,不被高脂飲食所影響。經由變性梯度膠體電泳與次世代定序(next-generation sequencing)分析之結果顯示,飲食的不同會立即改變腸道微生物的組成,食用高脂飼糧會使分解多醣類微生物增加,使得宿主吸收額外的熱量,造成肥胖。而L. rhamnosus GG能夠改變腸道菌相,使得腸內益菌增加,維持腸道健康。經由此研究,能夠更加闡明益生菌抗肥胖功能的調控機制,並改善人類與動物因肥胖所引起相關疾病的發生,也讓微生物與能量代謝的關係有更進一步的發現與突破。

Obesity, which has reached epidemic proportions globally, may induce metabolic syndromes in relation to cause of death. Leptin can suppress food intake and thereby lead to weight loss through binding leptin receptor on the hypothalamus. Suppressor of cytokine signaling (SOCS) proteins is one of the mediator reducing leptin sensitivity by inhibition of the phosphorylation of signal transducer and activator of transcription-3 (STAT3), an intracellular leptin-signaling mediator. Lactobacillus rhamnosus GG (LGG) was proved to be highly correlated with SOCS3. The purpose of this study is to expand the comprehension of the relation between L. rhamnosus GG and host energy metabolism. 8-week-old of C57BL/6J male mice were devided into treatment groups, ND (normal diet / PBS treatment) , HFD (high-fat diet / PBS treatment), LL (high-fat diet / 108 CFU L. rhamnosus GG) and LH (high-fat diet / 1010 CFU/mL L. rhamnosus GG). The grow performance, leptin sensitivity, and gut microbiota composition of the mice were assayed. The results show that, L. rhamnosus GG may decrease lipid deposition, high-dosed L. rhamnosus GG effectively maintained leptin sensitivity. In LH group, their body weight dropped off more clearly after leptin i.p. injection than saline i.p. injection. Also, the levels of serum leptin were significantly higher in L. rhamnosus GG -treated mice than those in the PBS-treated mice (p<0.05). In addition, leptin-injected mice presented significantly higher expression of SOCS-3 in hypothalamus than saline-injected mice (p<0.001) in LH group. Finally, L. rhamnosus GG could establish a healthy intestinal environment to prevent the damage cause by pathogens. Ileum sections showed that L. rhamnosus GG -treated mice had significant longer villi length and villi length-crypt depth ratio than HFD group. In conclusion, L. rhamnosus GG plays an important role in modulating serum leptin levels and giving rise to the enhancement of leptin sensitivity and intestinal health in diet-induced obesity.


口試委員審定書..............i
誌謝.......................ii
中文摘要...................iii
英文摘要...................iv

壹、文獻探討...............................1
第一節 肥胖................................1

一、肥胖的現況.............................1
二、肥胖的成因.............................3
(一)遺傳與生理因素.........................3
(二)環境因素..............................4
(三)生活型態及內分泌.......................4
(四)其他..................................4

三、肥胖與發炎反應.........................5

第二節、肥胖與食慾調控.....................6

一、食慾調控途徑與物質.....................6
二、瘦體素................................9
(一)瘦體素................................9
(二)瘦體素作用途徑........................9
(三)瘦體素抗性...........................10
(四)瘦體素抗性之機制......................10

第三節、腸道微生物........................13

一、腸道微生物與肥胖......................14
二、影響腸道微生物組成之因素...............15
(一)遺傳.................................15
(二)飲食.................................15
(三)免疫系統..............................16
(四)其他.................................16

三、益生菌與益生質........................17

四、益生菌對於能量衡定之機能性.............18
(一)調節腸道菌相.........................18
(二)影響宿主生理代謝機制..................18

五、Lactobacillus rhamnosus GG..........19

貳、材料與方法.......................... 20

第一節、實驗架構.........................20

第二節 L. rhamnosus GG 對於能量代謝與腸道微生物的影響.....21

一、實驗材料.............................21
(一)益生菌株.............................21
(二)試驗動物.............................21

二、實驗方法.............................21
(一)菌株製備.............................21
(二)試驗設計.............................22
(三)試樣收集與分析........................26
(四)統計分析.............................33

參、結果與討論............................36

第一節、Lactobacillus rhamnosus GG 對於能量代謝之影響...36
一、L. rhamnosus GG 對於食源性肥胖小鼠生長性狀影響.......36
二、L. rhamnosus GG 降低肝臟脂肪堆積...................40

第二節、L. rhamnosus GG 對於瘦體素敏感度之影響..........43
一、L. rhamnosus GG 對於瘦體素敏感度測試影響............43
二、L. rhamnosus GG 影響血液中瘦體素濃度...............44
三、L. rhamnosus GG 對於下視丘中 SOCS3 表現量影響......48

第三節、L. rhamnosus GG 對於腸道微生物之調節...........51
一、L. rhamnosus GG 保護腸道上皮型態完整性.............51
二、腸道微生物組成分析................................54

肆、結論......................................66

伍、參考文獻..................................67

圖目錄

圖1-1肥胖所引起的發炎反應與巨噬細胞浸潤.............5
圖1-2瘦體素於中樞神經系統之訊號傳導途徑與其阻斷物....12
圖1-3腸道微生物與宿主彼此間的影響..................16
圖2-1高脂飼糧誘導小鼠肥胖之試驗設計................24
圖 2-2 瘦體素敏感度試驗設計.......................25
圖 2-3 Illumina 雙邊定序技術流程.................34
圖 3-1 餵食 Lactobacillus rhamnosus GG 十週後對於食源性肥胖小鼠之體重影響........37
圖 3-2 餵食 Lactobacillus rhamnosus GG 十週後對於食源性肥胖小鼠之能量攝取影響.........38
圖 3-3 餵食 Lactobacillus rhamnosus GG 十週後對於食源性肥胖小鼠體重與副睪脂肪重量之影響.....39
圖 3-4 餵食 Lactobacillus rhamnosus GG 十週後小鼠肝臟組織切片圖............................41
圖 3-5 餵食 Lactobacillus rhamnosus GG 十週後小鼠肝臟組織以蘇丹黑染色之切片....42
圖 3-6 餵食 Lactobacillus rhamnosus GG 十週後之瘦體素敏感度測試之小鼠體重變化....45
圖3-7餵食Lactobacillus rhamnosus GG十週後對於小鼠血清中瘦體素濃度之影響.....46
圖3-8餵食Lactobacillus rhamnosus GG十週後對於小鼠血清中TNFα濃度之影響......47
圖 3-9 餵食 Lactobacillus rhamnosus GG 十週後對於小鼠下視丘中 SOCS3 表現量之影響.......50
圖 3-10 餵食 Lactobacillus rhamnosus GG 十週後對於小鼠腸道上皮型態之影響..........52
圖 3-11 餵食 Lactobacillus rhamnosus GG 十週後對於小鼠迴腸之組織型態學之影響..53
圖 3-12 餵食 Lactobacillus rhamnosus GG 小鼠糞便之變性梯度電泳膠片圖..................57
圖 3-13 餵食 Lactobacillus rhamnosus GG 之小鼠糞便經次世代定序後依據編碼所得組別之讀數.......59
圖 3-14 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物經次世代定序分析之菌門比例.........60
圖 3-15 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物經次世代定序分析之菌綱比例............61
圖 3-16 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物中桿菌綱含量.................62
圖 3-17 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物中菌門等級之主成分分析.......63
圖 3-18 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物中菌綱等級之主成分分析........64
圖 3-19 餵食 Lactobacillus rhamnosus GG 之小鼠腸道微生物中菌目等級之主成分分析........65

表目錄

表 1-1 肥胖的定義..................2
表 1-2 肥胖相關之疾病..............................2
表 1-3 影響中樞神經調控食慾之物質..................8
表 2-1 一般飼糧之能量來源比例......................23
表 2-2 高脂飼糧之能量來源比例......................23
表 2-3 小鼠誘導肥胖模型之試驗組別..........24
表 2-4 引子列表....................................28
表 2-5 序列條碼清單................................35
表 3-1 餵食 Lactobacillus rhamnosus GG 小鼠糞便經品質檢查及過濾後所得次世代定序之序列統計.......................58

行政院衛生福利部國民健康署。2007。成人(20歲以上)代謝症候群之判定標準。
行政院衛生福利部統計處。2015。103年死因統計結果分析。
張金堅、蔡崇煌、林肇堂。2015。肥胖與腸內菌的相關性。台灣醫界 58(6):16-20。
郭啟煜。2001。瘦素與瘦素抵抗。海軍醫學雜誌。中國,北京。
陳建甫、徐美菁、謝昌成、吳克恭。2007。益生菌的臨床應用現況。基層醫學 22:290-293。
彭仁奎、黃國晉、陳慶餘。2006。肥胖與代謝症候群。基層醫學 21(12):367-371。
楊宏志。2014。腸道菌叢與人類的免疫系統。臺灣醫學 18 (4):416-422。
葉志嶸、張新儀、潘文涵。2009。台灣近十二年之肥胖與代謝症候群之變遷趨勢:由NAHSIT 1993-1996 到 2005-2008。台灣國民營養健康調查 141-154。
劉建恆。2000。肥胖問題研究現況與發展趨勢。花蓮師院學報 10:385-400。
蔡兆勳、陳慶餘。2006。代謝症候群的相關基因及其表現。基層醫學 21 (11):338-340。
簡義紋、吳岱穎、林光洋、吳逸帆、郭冠良、季瑋珠。2013。肥胖的環境與生活型態因素。台灣衛誌 32(2):101-113。
譙仕彥、侯成立、曾祥芳。2014。乳酸菌對豬腸道屏障功能的調節作用及其機制。中國農業大學動物科學技術學院。中國,北京。
Aronsson, L., Y. Huang, P. Parini, M. Korach-Andre, J. Hakansson, J. A. Gustafsson, S. Pettersson, V. Arulampalam, and J. Rafter. 2010. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLOS ONE 5:e13087.
Arora, T., S. Singh, and R. K. Sharma. 2013. Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition 29:591–596.
Backhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 101:15718-15723.
Backhed, F., J. K. Manchester, C. F. Semenkovich, and J. I. Gordon. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. 104:979-984.
Balland, E., and M. A. Cowley. 2015. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol. 39:59–65.
Bastard, J. P., M. Maachi, C. Lagathu, M. J. Kim, M. Caron, H. Vidal , J. Capeau, and B. Feve. 2006. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17(1):4-12.
Bleau, C., L. Lamontagne, and R. Savard. 2005. New Lactobacillus acidophilus isolates reduce the release of leptin by murine adipocytes leading to lower interferon-γ production. Clin. Exper. Immunol. 140: 427-435.
Breton, J., N. Tennoune, N. Lucas, M. Francois, R. Legrand, J. Jacquemot, A. Goichon, C. Guerin, J. Peltier, M. Pestel-Caron, P. Chan, D. Vaudry, J. C. do Rego, F. Lienard, L. Penicaud, X. Fioramonti, I. S. Ebenezer, T. Hokfelt, P. Dechelotte, and S. O. Fetissov. 2016. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23:324–334.
Cani, P. D. 2013. Gut microbiota and obesity: lessons from the microbiome. Brief. Funct. Genomics 12: 381–387.
Cani, P. D., and N. M. Delzenne. 2009. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr. Opin. Pharmacol. 9:737–743.
Clarke, S. F., E. F. Murphy, K. Nilaweera, P. R. Ross, F. Shanahan, P. W. O’Toole, and P. D. Cotter. 2012. The gut microbiota and its relationship to diet and obesity. Gut Microbes 3: 186-202.
Collins, M. D. and G. R. Gibson. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69 (suppl): 1052S–1057S.
Delzenne, N. M., A. M. Neyrinck, F. Backhed, and P. D. Cani. 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7: 639–646.
Delzenne, N. M., and P. D. Cani. 2011. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu. Rev. Nutr. 31:15–31.
DiBaise, J. K., D. N. Frank, and R. Mathur. 2012. Impact of the gut microbiota on the development of obesity: current concepts. Am. J. Gastroenterol. Suppl 1 :22-27.
Dominguez-Bello, M. G., E. K. Costellob, M. Contrerasc, M. Magrisd, G. Hidalgod, N. Fierere, and R. Knight. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. 107:11971–11975.
El-Haschimi, K., D. D. Pierroz, S. M. Hileman, C. Bjorbaek, and J. S. Flier. 2000. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105(12):1827–1832
FAO/WHO. 2001. Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Oct. 1-4, 2001.
Gorbach, S. L. 1996. The discovery of Lactobacillus GG. Nutr. Today 31:25-45.
Havenaar, R., and M. J. H. Huis In’t Veld. 1992. Probiotics: a general view. In: Lactic acid bacteria in health and disease. Page 151-166 in Vol 1. Amsterdam: Elsevier Applied Science Publishers.
Honda, K., M. Moto, N. Uchida, F. He, and N. Hashizume. 2012. Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice, J. Clin. Biochem. Nutr. 51:96–101.
Ji, Y. S., H. N. Kim, H. J. Par, J. E. Lee, S. Y. Yeo, J. S. Yang, S. Y. Park, H. S. Yoon, G. S. Cho, C. M. A. P. Franz, A. Bomba, H.K. Shin and W. H. Holzapfel. 2012. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes. 3(1): 13-22.
Kennedy, G. C. 1953. The role of depot fat in the hypothalamic control of food intake in the rat. R Soc. 140:578-592.
Khan, M., D. Raoult, H. Richet, H. Lepidi, and B. La Scola. 2007. Growth-promoting effects of single-dose intragastrically administered probiotics in chickens. Br. Poult. Sci. 48:732-735.
Kim, K. A., W Gu, I. A. Lee, E. H. Joh, D. H. Kim. 2012. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLOS ONE 7: e47713.
Kim, S. W., K. Y. Park, B. Kim, E. Kim, C. K. Hyun. 2013. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 431:258–263.
Latvala, S., M. Miettinen, R. A. Kekkonen, R. Korpela, and I. Julkunen. 2011. Lactobacillus rhamnosus GG and Streptococcus thermophilus induce suppressor of cytokine signalling 3 (SOCS3) gene expression directly and indirectly via interleukin-10 in human primary macrophages. Clin. Exp. Immunol. 165: 94–103.
Martin, F. P. J., Y. Wang, N. Sprenger, E. Holmes, J. C. Lindon, S. Kochhar, and J. K. Nicholson. 2007. Effects of probiotic Lactobacillus paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy. J. Proteome Res. 6:1471–1481.
McMullen, M. H., J. M. Hamilton-Reeves, M. J. L. Bonorden, K. E. Wangen, W. R. Phipps, J. M. Feirtag, and M. S. Kurzer. 2006. Consumption of Lactobacillus acidophilus and Bifidobacterium longum does not alter phytoestrogen metabolism and plasma hormones in men: a pilot study. J. Alter Compl. Med. 12: 887-894.
Mirpuri, J., I. Sotnikov, L. Myers, T. L. Denning, F. Yarovinsky, C. A. Parkos, P. W. Denning, and N. A. Louis. 2012. Lactobacillus rhamnosus (LGG) regulates IL-10 signaling in the developing murine colon through upregulation of the IL-10R2 receptor subunit. PLoS ONE 7(12): e51955.
Mori, H., R. Hanada, T. Hanada, D. Aki, R. Mashima, H. Nishinakamura, T. Torisu, K. R. Chien, H. Yasukawa, and A. Yoshimura. 2004. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10: 739–743.
Nossa, C. W., W. E. Oberdorf, L. Yang, J. A. Aas, B. J. Paster, T. Z. DeSantis, E. L. Brodie, D. Malamud, M. A. Poles, and Z. Pei. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 16(33): 4135-4144.
Ott, S. J., M. Musfeldt, D. F. Wenderoth, J. Hampe, O. Brant, U. R. Fölsch, K. N. Timmis, and S. Schreiber. 2004. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53: 685–693.
Ozcan, U., L. Ozcan, E. Yilmaz, K. Duvel, M. Sahin, B. D. Manning, and G. S. Hotamisligil. 2008. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29: 541–551.
Qiao, Y., J. Sun, Y. Ding, G. Le, and Y. Shi. 2013. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. Microbiol Biotechnol. 97: 1689–1697.
Reinhardt, C., C. S. Reigstad, and F. Bäckhed. 2009. Intestinal microbiota during infancy and its implications for obesity. J. Pediatr. Gastroenterol. Nutr. 48: 249–256.
Ren, S., F. Zhang, C. Li, C. Jia, S. Li, H. Xi, H. Zhang, L. Yang, and Y. Wang. 2010. Selection of housekeeping genes for use in quantitative reverse transcription PCR assays on the murine cornea. Mol. Vis. 16: 1076-1086.
Ritze, Y., G. Bardos, A. Claus, V. Ehrmann, I. Bergheim, A Schwiertz, S. C. Bischoff. 2014. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS ONE 9(1): e80169.
Roberfroid, M., G. R. Gibson, L. Hoyles, A. L. McCartney, R. Rastall, I. Rowland, D. Wolvers, B. Watzl, H. Szajewska, B. Stahl, F. Guarner, F. Respondek, K. Whelan, V. Coxam, M. J. Davicco, L. Léotoing, Y. Wittrant, N. M. Delzenne, P. D. Cani, A. M. Neyrinck, and A. Meheust. 2010. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104: S1-S63.
Salminen, S. 1996. Uniqueness of probiotic strains. IDF Nutr. News Lett. 5:16-8.
Schele, E., L. Grahnemo, F. Anesten, A. Hallen, F. Backhed, and J. O. Jansson. 2013. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides preglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. The Endocrine Society. 154 (10):3643-3651.
Schrezenmeir, J., and M. de Vrese. 2001. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr. 73(suppl): 361S-364S.
Sonnenburg, J. L., C. T. L. Chen, and J. I. Gordon. 2006. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4: 2213-2226
Sousa, R., J. Halper, J. Zhang, S. J. Lewis, and W. I. O. Li. 2008. Effect of Lactobacillus acidophilus supernatants on body weight and leptin expression in rats. BMC Complement. Altern. Med. 8: 5-12.
Stsepetova, J., E. Sepp, H. Kolk, K. Loivukene, E. Songisepp, and M. Mikelsaar. 2011. Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. Br. J. Nutr. 105: 1235–1244.
Tabuchi, M., M. Ozaki, A. Tamura, N. Yamada, T. Ishida, M. Hosoda, and A. Hosono. 2003. Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 67: 1421–1424.
Turnbaugh, P. J., F. Bäckhed, L. Fulton, and J. I. Gordon. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213–223.
Van Heek, M., D. S. Compton, C. F. France, R. P. Tedesco, A. B. Fawzi, M. P. Graziano, E. J. Sybertz, C. D. Strader, and H. R. Davis Jr. 1997. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest. 99 (3): 385–390.
Wellen, K. E., and G. S. Hotamisligil. 2003. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112(12): 1785-1788.
Zhang, X., G. Zhang, H. Zhang, M. Karin, H. Bai, and D. Cai. 2008. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135: 61-73.
Zhang, Y ., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman.1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505): 425-432.
Zhou, Y., and L. Rui. 2013. Leptin signaling and leptin resistance. Front. Med. 7(2): 207–222.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top