跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃致遠
研究生(外文):Chih-Yuan Huang
論文名稱:醋酸丙酸纖維素/聚對苯二甲酸丁二酯摻合物之製備及其性質分析
論文名稱(外文):Preparation and Characterization of Cellulose Acetate Propionate / (Poly(Butylene Terephthalate)) Blends
指導教授:邱文英邱文英引用關係
口試委員:鄭國忠鄭如忠董崇民李佳芬
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:111
中文關鍵詞:聚對苯二甲酸丁二酯醋酸丙酸纖維素非均相酯化反應高分子摻合物相容性聚乙二醇
外文關鍵詞:poly(butylene terephthalate) (PBT)cellulose acetate propionate (CAP)heterogeneous esterificationpolymer blendmiscibilitypoly(ethylene glycol) (PEG)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為三大部分,第一部分以由天然纖維素藉著有機酸當介質、硫酸當催化劑、酸酐為酯化劑的非均相法合成醋酸丙酸纖維素(CAP),藉由凝膠層析儀(GPC)、液態超導核磁共振儀(NMR)、微差掃描熱分析儀(DSC)、熱重分析儀(TGA)和X光繞射儀(XRD)探討反應時間、反應溫度以及丙酸酐/乙酸酐的莫爾比的改變,對CAP的分子量、化學結構、熱性質與結晶性的影響。研究發現,隨著反應時間與反應溫度的增加,CAP的丙醯基取代度和結晶度皆上升,而其分子量、結晶溫度、熔融溫度和裂解溫度則下降。而當丙酸酐/乙酸酐的莫爾比增加時,CAP的丙醯基取代度、分子量、熔融溫度、結晶溫度、結晶度和裂解溫度皆為上升。
第二部分及第三部分為將聚對苯二甲酸丁二酯(PBT)與CAP以不同的組成摻混,並透過熱壓成型加工成薄膜。第二部分以CAP為分散相PBT當連續相的組成,第三部分則相反,以PBT為分散相CAP當連續相,兩部分的產品皆藉由掃描式電子顯微鏡(SEM)、接觸角測量儀、XRD、偏光顯微鏡(POM)、動態機械分析儀(DMA)、DSC和TGA來探討摻混材料的微結構、親水性、結晶行為、相容性、熱性質與機械性質。對照兩組的研究結果可知,PBT與CAP為不相容的摻混系統,因為各自的玻璃轉化溫度(Tg)皆不隨組成不同改變,然而若有小分子的聚乙二醇(PEG)作為塑化劑加入,則變為部分相容摻混系統。CAP與PEG的存在會影響PBT的結晶行為,因此隨著CAP或PEG的含量增加,PBT的結晶溫度會向低溫移動,其中當PBT為分散相時,PBT需要降溫至CAP的Tg溫度之下藉由異相成核才能結晶。CAP由於其化學結構較剛硬、側鏈較多以及分子量較大,因此不易形成結晶。CAP較PBT疏水且裂解溫度較低。分散相的成分在摻合物薄膜中會形成球狀顆粒。


Three divided parts were contained in this thesis. In the first part, cellulose acetate propionate (CAP) was synthesized by using acid anhydride as an acylating agent, sulfuric acid as a catalyst and acid as a dispersion medium from natural cellulose through heterogeneous esterification. The effects of reaction temperature, reaction time and the molar ratio of propionic anhydride to acetic anhydride on esterification were investigated. The molecular weight, chemical structure, crystallization behavior and thermal properties of CAP were investigated using gel permeation chromatography (GPC), nuclear magnetic resonance spectrometer (NMR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). As the reaction time and temperature increased, the melting point, crystallization temperature, molecular weight and degradation temperature of CAP decreased; however the substitution degree of propionyl group and crystallinity of CAP increased. As the the molar ratio of propionic anhydride to acetic anhydride increased, the melting point, substition degree of propionyl group, crystallization temperature, molecular weight, degradation temperature and crystallinity of CAP increased.
In the second and third parts, blends of CAP with poly(butylene terephthalate) (PBT) were prepared in the form of film by melt compounding. The CAP was a dispersed phase in the second part while PBT was a dispersed phase in the third part. The microstructures, crystallization behavior, hydrophlilicity, miscibility, thermal and mechanical properties were investigated using scanning electron microscope (SEM), polarized optical microscope (POM), XRD, contact angle system, DSC, dynamic mechanical analysis (DMA), and TGA. The CAP/PBT blends was immiscible because of the presence of two invariant glass transition temperatures (Tg) corresponding to the CAP and PBT components. However, CAP/PBT blends became partially miscible after low molecule weight poly(ethylene glycol) (PEG), as a plasticlizer, were added. During the cooling from the molten state, the PBT crystallization peak shifted to lower temperature with increasing the CAP or PEG content, indicating that the presence of CAP or PEG has some effect on the crystallinity of the PBT component in the blends. The PBT component was crystallized at the temperature below the Tg of CAP as it was a dispersed phase in CAP/PBT films through heterogeneous nucleation. The CAP component could not undergo crystallization owing to its rigid structure, alkyl substituents and high molecular weight. The degradation temperature and the hydrophlilicity of CAP/PBT films decreased gradually with increasing the CAP content. For the CAP/PBT films, the dispersed phase was present as dispersed particles in the matrix.


誌謝 II
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 X
1 第一章 緒論 1
1.1 研究動機 1
1.2 研究架構 2
2 第二章 文獻回顧 5
2.1 纖維素簡介 5
2.1.1 纖維素的結構 5
2.1.2 纖維素的化學性質 6
2.2 纖維素改質 7
2.2.1 醋酸纖維素 9
2.2.2 纖維素混合酯 11
2.2.3 酯化纖維素性質 12
2.3 聚酯高分子 15
2.3.1 聚酯高分子製備 15
2.3.2 聚酯高分子性質 16
2.4 高分子摻混 20
2.4.1 高分子摻混的熱力學 20
2.4.2 高分子摻混的結晶形態 23
2.5 酯化纖維素/聚酯摻合物 24
3 第三章 實驗方法 27
3.1 實驗材料 27
3.2 實驗儀器 30
3.3 樣品製備流程 33
3.3.1 醋酸丙酸纖維素合成 36
3.3.2 CAP/PBT及P-CAP/PBT摻合物膠粒之製備 38
3.3.3 PBT/CAP及PBT/P-CAP摻合物膠粒之製備 40
3.3.4 摻合物薄膜之製備 41
3.3.5 摻合物纖維之製備 41
3.4 性質測定 42
3.4.1 分子量測定 42
3.4.2 分子結構分析 42
3.4.3 熱性質分析 42
3.4.4 結晶構造分析 43
3.4.5 形態及微結構分析 44
3.4.6 表面親疏水分析 44
3.4.7 機械強度分析 44
4 第四章 結果討論 45
4.1 醋酸丙酸纖維素性質分析 45
4.1.1 分子結構分析(NMR) 45
4.1.2 分子量分析(GPC) 51
4.1.3 熱性質分析(DSC、TGA) 53
4.1.4 結晶構造分析(XRD) 57
4.2 CAP/PBT及P-CAP/PBT摻合物性質分析 58
4.2.1 熱性質分析 (DSC、DMA、TGA) 58
4.2.2 結晶構造分析(XRD、POM) 68
4.2.3 形態及微結構分析(SEM) 71
4.2.4 親疏水性值分析(接觸角) 74
4.3 PBT/CAP及PBT/P-CAP摻合物性質分析 75
4.3.1 熱性質分析(DSC、DMA、TGA) 75
4.3.2 結晶構造分析析(XRD、POM) 82
4.3.3 形態及微結構分析(SEM) 85
4.3.4 親疏水性值分析(接觸角) 88
5 第五章 結論 89
6 參考文獻 93
7 附錄 101
7.1 CAP/PBT與P-CAP/PBT纖維性質分析 101
7.1.1 熱性質分析 101
7.1.2 結晶構造分析 102
7.1.3 微結構分析 102
7.1.4 機械強度分析 104
7.2 PBT/CAP與PBT/P-CAP纖維性質分析 106
7.2.1 熱性質分析 106
7.2.2 結晶構造分析 107
7.2.3 微結構分析 107
7.2.4 機械強度分析 111


1.Klemm, D., et al., Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 2005. 44(22): p. 3358-3393.
2.Liu, K., et al., Enhancing antibacterium and strength of cellulosic paper by coating triclosan-loaded nanofibrillated cellulose (NFC). Carbohydrate Polymers, 2015. 117: p. 996-1001.
3.Kosaka, P.M., et al., Characterization of Ultrathin Films of Cellulose Esters. Cellulose, 2005. 12(4): p. 351-359.
4.Chen, B., L. Zhong, and L. Gu, Thermal properties and chemical changes in blend melt spinning of cellulose acetate butyrate and a novel cationic dyeable copolyester. Journal of Applied Polymer Science, 2010. 116(5): p. 2487-2495.
5.Qiu, W., T. Endo, and T. Hirotsu, Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weight. European Polymer Journal, 2006. 42(5): p. 1059-1068.
6.Bengtsson, M., M.L. Baillif, and K. Oksman, Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(8): p. 1922-1931.
7.Edgar, K.J., et al., Advances in cellulose ester performance and application. Progress in Polymer Science, 2001. 26(9): p. 1605-1688.
8.Bottenbruch, L. and S. Anders, Engineering Thermoplastics: Polycarbonates Polyacetals Polyesters Cellulose Esters. 1996: Hanser Verlag.
9.Sjostrom, E., Wood chemistry: fundamentals and applications. 2013: Elsevier.
10.Purves, C., Chain Structure in Cellulose and Cellulose Derivatives: Part 1. 1954, Wiley-Interscience, New York.
11.Isogai, A. and R.H. Atalla, Dissolution of Cellulose in Aqueous NaOH Solutions. Cellulose, 1998. 5(4): p. 309-319.
12.Roy, D., et al., Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 2009. 38(7): p. 2046-2064.
13.Atalla, R.H. and D.L. Vanderhart, Native cellulose: a composite of two distinct crystalline forms. Science, 1984. 223(4633): p. 283-285.
14.Krässig, H.A., H.A. Krässig, and H.A. Krässig, Cellulose: structure, accessibility and reactivity. 1993: Gordon and Breach Science Publishers.
15.Hebeish, A. and J. Guthrie, The chemistry and technology of cellulosic copolymers. Vol. 4. 2012: Springer Science & Business Media.
16.STRIEGEL, A.M., Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. Journal of the Chilean Chemical Society, 2003. 48(1): p. 73-77.
17.Seymour, R.B. and E.L. Johnson, Acetylation of DMSO:PF solutions of cellulose. Journal of Polymer Science: Polymer Chemistry Edition, 1978. 16(1): p. 1-11.
18.Clermont, L.P. and N. Manery, Modified cellulose acetate prepared from acetic anhydride reacted with cellulose dissolved in a chloral–dimethylformamide mixture. Journal of Applied Polymer Science, 1974. 18(9): p. 2773-2784.
19.Steinmeier, H., 3. Acetate manufacturing, process and technology 3.1 Chemistry of cellulose acetylation. Macromolecular Symposia, 2004. 208(1): p. 49-60.
20.Kunze, J. and H.-P. Fink, Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea. Macromolecular Symposia, 2005. 223(1): p. 175-188.
21.Activation of cellulose. 1953: U.S. Patent No 2,631,144.
22.El Seoud, O.A. and T. Heinze, Organic Esters of Cellulose: New Perspectives for Old Polymers, in Polysaccharides I: Structure, Characterization and Use, T. Heinze, Editor. 2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 103-149.
23.Lenz, R.W., Cellulose, structure, accessibility and reactivity, by H. A. Krässig, Gordon and Breach Publishers, 5301 Tacony Street, Philadelphia, PA, 1993; xvi + 376 pp. Price: $260.00. Journal of Polymer Science Part A: Polymer Chemistry, 1994. 32(12): p. 2401-2401.
24.Balser, K., et al., Cellulose Esters, in Ullmann''s Encyclopedia of Industrial Chemistry. 2012, Wiley-VCH Verlag GmbH & Co. KGaA.
25.Agreda, V.H., Acetic acid and its derivatives. 1992: CRC Press.
26.Mench, J.W., B. Fulkerson, and G.D. Hiatt, Valeric Acid Esters of Cellulose. I&EC Product Research and Development, 1966. 5(2): p. 110-115.
27.Shuto, Y. and H. Taniguchi, Cellulose acetate propionate. 1999: U.S. Patent No. 5,977,347. 2 Nov. 1999.
28.Shuto, Y. and H. Taniguchi, Cellulose acetate propionate, solution thereof and cellulose acetate propionate film. 1999: U.S. Patent No. 5,856,468. 5 Jan. 1999.
29.Company, E.C., Eastman Cellulose Esters. Publication E-325, 2016.
30.Maim, C.J., et al., Aliphatic Acid Esters of Cellulose. Properties. Industrial & Engineering Chemistry, 1951. 43(3): p. 688-691.
31.Miyamoto, T., et al., 13C-NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate. Journal of Polymer Science: Polymer Chemistry Edition, 1985. 23(5): p. 1373-1381.
32.Jabarin, S.A. and E.A. Lofgren, Solid state polymerization of poly(ethylene terephthalate): Kinetic and property parameters. Journal of Applied Polymer Science, 1986. 32(6): p. 5315-5335.
33.Pi Chang, E., R.O. Kirsten, and E.L. Slagowski, The effect of additives on the crystallization of poly (butylene terephthalate). Polymer Engineering & Science, 1978. 18(12): p. 932-936.
34.Lu, F.-M. and J.E. Spruiell, Influence of processing conditions on structure development and mechanical properties of poly(butylene terephthalate) filament. Journal of Applied Polymer Science, 1986. 31(6): p. 1595-1607.
35.Bornschlegl, E. and R. Bonart, Small angle X-ray scattering studies of poly(ethylene terephthalate) and poly(butylene terephthalate). Colloid and Polymer Science, 1980. 258(3): p. 319-331.
36.Leung, W.P. and C.L. Choy, Physical properties of oriented poly(butylene terephthalate). Journal of Applied Polymer Science, 1982. 27(7): p. 2693-2709.
37.Illers, K.-H., Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate. Colloid and Polymer Science, 1980. 258(2): p. 117-124.
38.Hobbs, S.Y. and C.F. Pratt, Multiple melting in poly(butylene terephthalate). Polymer, 1975. 16(6): p. 462-464.
39.Nichols, M.E. and R.E. Robertson, The multiple melting endotherms from poly(butylene terephthalate). Journal of Polymer Science Part B: Polymer Physics, 1992. 30(7): p. 755-768.
40.Kim, H.G. and R.E. Robertson, Multiple melting endotherms in isothermally melt-crystallized poly(butylene terephthalate). Journal of Polymer Science Part B: Polymer Physics, 1998. 36(10): p. 1757-1767.
41.Groeninckx, G., H. Berghmans, and G. Smets, Morphology and modulus–temperature behavior of semicrystalline poly(ethylene terephthalate) (PET). Journal of Polymer Science: Polymer Physics Edition, 1976. 14(4): p. 591-602.
42.Groeninckx, G., et al., Crystallization of poly(ethylene terephthalate) induced by inorganic compounds. I. Crystallization behavior from the glassy state in a low-temperature region. Journal of Polymer Science: Polymer Physics Edition, 1974. 12(2): p. 303-316.
43.Sarath, C.C., R.A. Shanks, and S. Thomas, Chapter 1 - Polymer Blends, in Nanostructured Polymer Blends. 2014, William Andrew Publishing: Oxford. p. 1-14.
44.Goh, S.H. and X. Ni, A completely miscible ternary blend system of poly(3-hydroxybutyrate), poly(ethylene oxide) and polyepichlorohydrin. Polymer, 1999. 40(20): p. 5733-5735.
45.Shultz, A.R. and B.M. Gendron, Thermo-optical and differential scanning calorimetric observations of mobility transitions in polystyrene-poly(2,6-dimethyl-1,4-phenylene oxide) blends. Journal of Applied Polymer Science, 1972. 16(2): p. 461-471.
46.Chong, Y.F. and S.H. Goh, Miscibility of poly(tetrahydropyranyl-2-methacrylate) and poly(cyclohexyl methacrylate) with styrenic polymers. European Polymer Journal, 1991. 27(6): p. 501-504.
47.Walsh, D.J., J.S. Higgins, and A. Maconnachie, Polymer blends and mixtures. Vol. 89. 2012: Springer Science & Business Media.
48.Olabisi, O., L.M. Robeson, and M.T. Shaw, Chapter 3 - Methods for Determining Polymer—Polymer Miscibility, in Polymer–Polymer Miscibility. 1979, Academic Press. p. 117-193.
49.Fox, T.G., Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc, 1956. 1(2): p. 123-35.
50.Gordon, M. and J.S. Taylor, Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. Journal of Applied Chemistry, 1952. 2(9): p. 493-500.
51.Warner, F.P., W.J. MacKnight, and R.S. Stein, A small-angle x-ray scattering study of blends of isotactic and atactic polystyrene. Journal of Polymer Science: Polymer Physics Edition, 1977. 15(12): p. 2113-2126.
52.Balsara, N.P., C. Lin, and B. Hammouda, Early Stages of Nucleation and Growth in a Polymer Blend. Physical Review Letters, 1996. 77(18): p. 3847-3850.
53.Crevecoeur, G. and G. Groeninckx, Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules, 1991. 24(5): p. 1190-1195.
54.Keith, H.D. and F.J. Padden, Spherulitic Crystallization from the Melt. I. Fractionation and Impurity Segregation and Their Influence on Crystalline Morphology. Journal of Applied Physics, 1964. 35(4): p. 1270-1285.
55.Buchanan, C.M., et al., Cellulose ester-aliphatic polyester blends: the influence of diol length on blend miscibility. Macromolecules, 1993. 26(21): p. 5704-5710.
56.Buchanan, C.M., et al., Cellulose acetate propionate and poly(tetramethylene glutarate) blends. Macromolecules, 1993. 26(11): p. 2963-2967.
57.White, A.W., et al., Mechanical properties of cellulose acetate propionate/aliphatic polyester blends. Journal of Applied Polymer Science, 1994. 52(4): p. 525-530.
58.Buchanan, C.M., et al., Composting of miscible cellulose acetate propionate-aliphatic polyester blends. Journal of environmental polymer degradation, 1995. 3(1): p. 1-11.
59.Hubbell, D.S. and S.L. Cooper, The physical properties and morphology of poly-ϵ-caprolactone polymer blends. Journal of Applied Polymer Science, 1977. 21(11): p. 3035-3061.
60.Vázquez-Torres, H. and C.A. Cruz-Ramos, Blends of cellulosic esters with poly(caprolactone): Characterization by DSC, DMA, and WAXS. Journal of Applied Polymer Science, 1994. 54(8): p. 1141-1159.
61.Kusumi, R., et al., Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behaviour. Cellulose, 2008. 15(1): p. 1-16.
62.Scandola, M., G. Ceccorulli, and M. Pizzoli, Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules, 1992. 25(24): p. 6441-6446.
63.Uesaka, T., et al., Structure and physical properties of poly(butylene succinate)/cellulose acetate blends. Polymer, 2000. 41(23): p. 8449-8454.
64.Field, N.D. and S.S. Song, Blends of poly(ethylene terephthalate) and cellulose. Journal of Polymer Science: Polymer Physics Edition, 1984. 22(1): p. 101-106.
65.Field, N.D. and M.-C. Chien, Poly(ethylene terephthalate)/cellulose blends. Journal of Applied Polymer Science, 1985. 30(5): p. 2105-2113.
66.Nabar, U.Y., A. Gupta, and R. Narayan, Isothermal Crystallization Kinetics of Poly (Ethylene Terephthalate) – Cellulose Acetate Blends. Polymer Bulletin, 2005. 53(2): p. 117-125.
67.Wang, D. and G. Sun, Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. European Polymer Journal, 2007. 43(8): p. 3587-3596.
68.Wang, D. and G. Sun, Novel polymer blends from polyester and bio-based cellulose ester. Journal of Applied Polymer Science, 2011. 119(4): p. 2302-2309.
69.Wang, D., G. Sun, and B.-S. Chiou, A High-Throughput, Controllable, and Environmentally Benign Fabrication Process of Thermoplastic Nanofibers. Macromolecular Materials and Engineering, 2007. 292(4): p. 407-414.
70.Huang, K., et al., Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem, 2011. 59(10): p. 5376-81.
71.Liebert, T., M.A. Hussain, and T. Heinze, Structure Determination of Cellulose Esters via Subsequent Functionalization and NMR Spectroscopy. Macromolecular Symposia, 2005. 223(1): p. 79-92.
72.Gottlieb, H.E., Vadim Kotlyar, and Abraham Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities. The Journal of organic chemistry, 1997. 62(21): p. 7512-7515.
73.Majdanac, L.D., D. Poleti, and M.J. Teodorovic, Determination of the crystallinity of cellulose samples by x-ray diffraction. Acta Polymerica, 1991. 42(8): p. 351-357.
74.Feldstein, M.M., et al., Coherence of thermal transitions in poly(N-vinyl pyrrolidone)–poly(ethylene glycol) compatible blends 1. Interrelations among the temperatures of melting, maximum cold crystallization rate and glass transition. Polymer, 2000. 41(14): p. 5327-5338.
75.Li, R.K.Y., S.C. Tjong, and X.L. Xie, The structure and physical properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and poly(butylene terephthalate). Journal of Polymer Science Part B: Polymer Physics, 2000. 38(3): p. 403-414.
76.Apostolov, A.A., et al., Alpha−Beta Transition in Poly(butylene terephthalate) As Revealed by Small-Angle X-ray Scattering. Macromolecules, 2000. 33(18): p. 6856-6860.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊