跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳緯倫
研究生(外文):Wei-Lun Chen
論文名稱:含金剛烷規則樹枝狀形狀記憶聚氨酯的合成與鑑定
論文名稱(外文):Preparation and Characterization of Shape Memory Polyurethanes Based on Adamantane-containing Dendrons
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
口試委員:邱文英戴憲弘童世煌蘇文炯
口試委員(外文):Wen-Yen ChiuShenghong A. DaiShih-Huang TungWen-Chiung Su
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:137
中文關鍵詞:Poly(urea/malonamide)物理交聯形狀記憶聚胺酯
外文關鍵詞:Poly(urea/malonamide)physical crosslinkShape Memory Polyurethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用具有反應選擇性的雙官能基單體 (4-isocyanato-4’(3,3-dimethyl-2,4-azetidino)diphenylmethan) (IDD),以收歛法製備出一系列以金剛烷為末端基團的poly(urea/malonamide)規則樹枝狀分子,探討其應用在形狀記憶聚胺酯的效果。
以IDD和構築單元交替反應,isocyanate和一級胺在低溫下反應成urea鍵結,再以azetidine-2,4-dione和一級胺在高溫下形成malonamide鍵結,可免除催化劑添加、活化、去保護等步驟,逐步得到一系列具有窄分子量分布特性的樹枝狀分子,urea/malonamide的分子設計賦予樹枝狀分子豐富的氫鍵。將規則樹枝狀分子改質成聚胺酯的雙醇鏈延長劑接在側鏈,或單醇封端劑接在主鏈,經由豐富的urea/malonamide鍵結增加硬鏈段氫鍵密度,加強材料性質。
由IR、NMR、Mass、EA分析poly(urea/malonamide),證實確實製備出樹枝狀分子,並以GPC確認規則樹枝狀分子擁有窄分子量分佈。TGA與DSC分析poly(urea/malonamide)與聚胺酯的熱性質,確認poly(urea/malonamide)的玻璃轉移溫度隨代數而上升,並由DSC了解聚胺酯的相轉變行為。由萬能拉力機、DMA分析聚胺酯,萬能拉力機顯示聚胺酯在室溫下的機械性質,發現結晶與硬鏈段含量皆對聚胺酯的機械性質有影響。DMA觀察聚胺酯在不同溫度下的儲存模數,發現高溫儲存模數會隨著物理交聯密度的增加而提高,低溫則受到材料結晶能力的影響。形狀記憶能力同樣以DMA量測,發現擁有高代數側鏈的聚胺酯具有較穩定氫鍵物理交聯,因此在多次拉伸後仍擁有良好的形狀記憶能力,本實驗以SPU35-G2.5、SPU40-G2.5、SPU45-G2.5的性質最佳,擁有97%以上的高形狀維持率,且經過多次拉伸,形狀回復率維持在94%以上,並在手拉測試中可在瞬間完成形狀回復。


A series of poly(urea/malonamide) dendrons with peripheral adamantyl groups were incoporated into polyurethanes to investigate their shape memory behavior. The dual functional (4-isocyanato-4’(3,3-dimethyl-2,4-azetidino)diphenylmethan) (IDD) was used to synthesize a series of hydrogen bond-rich poly(urea/malonamide) dendrons via convergent route. With high reactivity of isocyanate and reaction selectivity of azetidine-2,4-dione, a sequential method to prepare dendrons without protection-deprotection process was developed under mild condition The dendrons were further introduced into polyurethanes, providing physical crosslinking interactions to polyurethanes.
Well-defined poly(urea/malonamide) dendrons were successfully prepared as evidenced by analyses of IR, NMR, and Mass spectroscopy, and EA. GPC analysis showed that the molecular weights of dendrons in this study are mono-dispersed. Differential scanning calorimeter (DSC) revealed that with the increasing generation of dendritic poly (urea/malonamide), the glass transition temperature rose as a result of increasing hydrogen bonding interactions.
Universal tensile machine (UTM) and dynamic mechanical analysis (DMA) were utilized for evaluating mechanical and shape memory properties of side-chain dendritic polyurethanes (SPUs) and end-capped polyurethanes (EPUs). A series of linear polyurethanes (LPUs) were prepared for comparison. All the EPUs were fragile under room temperature, which were not available for mechanical testing. UTM shows that SPUs are more rigid than LPUs under room temperature due to better crystallinity or stronger physical crosslinking interactions. DMA shows that SPUs exhibited higher storage modulus than did LPU at low temperatures owing to higher crystallinity. This would further enhance shape retention properties. On the other hand, the higher density of physical crosslinks in SPU-G2.5 than those in SPU-G1.5 and LPU would also enhance storage modulus of SPUs-G2.5 at high temperatures. This would improve shape recovery properties. The result of cyclic shape memory test shows that shape memory process of SPUs took less than 3 seconds. Furthermore, SPUs with high soft segment content exhibited excellent shape retention over 97%, and the SPU40-G2.5 sample exhibit shape recovery over 95% even after 3 rounds of cyclic shape memory test. It is concluded that the enhanced physical crosslinking interactions improved shape memory effect in polyurethanes, along with a proper tuning of hard segment content. A series of PUs with excellent shape-memory effect have been successfully developed in this work.


摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XI
壹、緒論 1
貳、 文獻回顧 3
2.1 形狀記憶材料之簡介 3
2.1.1形狀記憶高分子的原理 6
2.1.2熱感應型(thermo-responsive)形狀記憶高分子 8
2.2聚胺酯樹脂之簡介 11
2.2.1聚胺酯之原料及特性31 12
2.2.2 形狀記憶聚胺酯的設計 18
2.3規則樹枝狀分子(dendrimer)簡介 18
2.3.1 規則樹枝狀分子合成路徑 20
2.3.2規則樹枝狀衍生物 22
2.4 Poly(urea/malonamide)規則樹枝狀分子 23
2.4.1 Azetidine-2,4-dione反應選擇性 23
2.4.2 反應選擇性IDD製備poly(urea/malonamide)規則樹枝狀分子 24
2.4.3 Poly(urea/malonamide)規則樹枝狀分子應用於聚胺酯 25
2.4.4 poly(urea/malonamide)側鏈規則樹枝狀形狀記憶聚胺酯 26
2.5形狀記憶高分子之應用 26
2.6金剛烷補強高分子 30
2.7研究動機 31
参、實驗內容 33
3.1藥品及溶劑 33
3.2實驗儀器 36
3.3實驗流程圖 38
3.4合成步驟 40
3.4.1 IDD之製備 40
3.4.2 末端含金剛烷Poly(urea/malonamide) 規則樹枝狀分子之合成 41
3.4.3 末端含金剛烷poly(urea/malonamide)鏈延長劑之製備 46
3.4.4末端含金剛烷poly(urea/malonamide)封端劑之製備 49
3.4.5 線性聚胺酯 (LPU)之製備 51
3.4.6 含金剛烷之側鏈規則樹枝狀聚胺酯材料 (SPU)之製備 52
3.4.7 含金剛烷之封閉型末端規則樹枝狀聚胺酯材料 (EPU)之製備 53
肆、結果與討論 55
4.1合成具反應選擇性單體IDD 55
4.2 規則樹枝狀poly(urea/malonamide)分子之合成 58
4.2.1 G0.5-Ada之合成與結構鑑定 58
4.2.2 G1.0-Ada之合成與結構鑑定 61
4.2.3 G1.5-Ada之合成與結構鑑定 63
4.2.4 G2.0-Ada合成與結構鑑定 66
4.2.5 G2.5-Ada之合成與結構鑑定 68
4.3 金剛烷系列鏈延長劑之合成與鑑定 71
4.3.1 A-G0.5-Ada之合成與結構鑑定 71
4.3.2 A-G1.5-Ada之合成與結構鑑定 74
4.3.3 A-G2.5-Ada之合成與結構鑑定 76
4.3.4 E-G0.5-Ada之合成與結構鑑定 79
4.3.5 E-G1.5-Ada之合成與結構鑑定 82
4.3.6 E-G2.5-Ada之合成與結構鑑定 85
4.4 規則樹枝狀poly(urea/malonamide) 聚合物之熱性質分析 89
4.4.1 TGA熱重分析 89
4.4.2 DSC微差掃描熱分析 90
4.5 形狀記憶聚胺酯材料之合成與鑑定 92
4.5.1 線性聚胺酯 (LPU)之合成 92
4.5.1 側鏈含金剛烷形狀記憶聚胺酯 (SPU)之合成 93
4.5.2末端含金剛烷形狀記憶聚胺酯 (EPU)之合成 94
4.6聚胺酯之FT-IR光譜之比較 95
4.7聚胺酯之熱性質分析 99
4.7.1 TGA熱重分析 99
4.7.2 DSC微差掃描熱分析 100
4.8聚胺酯之機械性質分析 108
4.9聚胺酯之動態機械性質分析 (DMA) 112
4.10聚胺酯形狀記憶測試 117
4.10.1 LPU系列聚胺酯之形狀記憶測試 118
4.10.1 SPU系列聚胺酯之形狀記憶測試 119
伍、結論 123
陸、參考文獻 124


1.Ping, P.; Wang, W.; Chen, X.; Jing, X., Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6 (2), 587-592.
2.Buehler, W. J.; Gilfrich, J. V.; Wiley, R. C., Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 1963, 34 (5), 1475-1477.
3.Sun, L.; Huang, W. M., Nature of the multistage transformation in shape memory alloys upon heating. Metal Science and Heat Treatment 2010, 51 (11), 573-578.
4.Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M. A., A review of shape memory alloy research, applications and opportunities. Materials & Design 2014, 56, 1078-1113.
5.Lai, A.; Du, Z.; Gan, C. L.; Schuh, C. A., Shape Memory and Superelastic Ceramics at Small Scales. Science 2013, 341 (6153), 1505-1508.
6.Vernon, L. B.; Vernon, H. M., Process of manufacturing articles of thermoplastic synthetic resins. Google Patents: 1941.
7.(a) Charlesby, A., Pergamon Press,Oxford, 1960, 198, Atomic Radiation and Polymers. Pergamon Press: 1960; p 556; (b) Ota, S., Current status of irradiated heat-shrinkable tubing in Japan. Radiation Physics and Chemistry (1977) 1981, 18 (1–2), 81-87; (c) Machi, S., New trends of radiation processing applications. Radiation Physics and Chemistry 1996, 47 (3), 333-336; (d) Hitov, J. J.; Rainer, W. C.; Redding, E. M.; Sloan, A. W.; Stewart, W. D., Polyethylene product and process. Google Patents: 1964.
8.(a) Gandini, A., The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science 2013, 38 (1), 1-29; (b) Defize, T.; Riva, R.; Raquez, J.-M.; Dubois, P.; Jérôme, C.; Alexandre, M., Thermoreversibly Crosslinked Poly(ε-caprolactone) as Recyclable Shape-Memory Polymer Network. Macromolecular Rapid Communications 2011, 32 (16), 1264-1269.
9.Lendlein, A.; Jiang, H.; Junger, O.; Langer, R., Light-induced shape-memory polymers. Nature 2005, 434 (7035), 879-882.
10.(a) Chen, S.; Hu, J.; Zhuo, H.; Yuen, C.; Chan, L., Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 2010, 51 (1), 240-248; (b) Chen, S.; Hu, J.; Yuen, C.-w.; Chan, L., Supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Materials Letters 2009, 63 (17), 1462-1464.
11.(a) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W., Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278 (5343), 1601-1604; (b) Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K. L.; Maitland, D. J.; Voit, W., Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules 2012, 45 (2), 1062-1069; (c) Li, J.; Viveros, J. A.; Wrue, M. H.; Anthamatten, M., Shape-Memory Effects in Polymer Networks Containing Reversibly Associating Side-Groups. Advanced Materials 2007, 19 (19), 2851-2855.
12.Guo, M.; Pitet, L. M.; Wyss, H. M.; Vos, M.; Dankers, P. Y. W.; Meijer, E. W., Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. Journal of the American Chemical Society 2014, 136 (19), 6969-6977.
13.Shirai, Y.; Hayashi, S., Mitsubishi Tech. Bull. 1988, 184, 213.
14.Bae, C. Y.; Park, J. H.; Kim, E. Y.; Kang, Y. S.; Kim, B. K., Organic-inorganic nanocomposite bilayers with triple shape memory effect. Journal of Materials Chemistry 2011, 21 (30), 11288-11295.
15.Wang, M.; Zhang, L., Recovery as a measure of oriented crystalline structure in poly (ether ester) s based on poly (ethylene oxide) and poly (ethylene terephthalate) used as shape memory polymers. Journal of Polymer Science Part B: Polymer Physics 1999, 37 (2), 101-112.
16.Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M. C.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
17.Gu, X.; Mather, P. T., Entanglement-based shape memory polyurethanes: synthesis and characterization. Polymer 2012, 53 (25), 5924-5934.
18.Zhao, Q.; Qi, H. J.; Xie, T., Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science 2015, 49, 79-120.
19.Hu, J.; Chen, S., A review of actively moving polymers in textile applications. Journal of Materials Chemistry 2010, 20 (17), 3346-3355.
20.Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S., Shape memory polymers: Past, present and future developments. Progress in Polymer Science 2015, 49–50, 3-33.
21.Lendlein, A.; Kelch, S., Shape‐memory polymers. Angewandte Chemie International Edition 2002, 41 (12), 2034-2057.
22.Liu, C.; Qin, H.; Mather, P., Review of progress in shape-memory polymers. Journal of Materials Chemistry 2007, 17 (16), 1543-1558.
23.(a) Edelman, E. R.; Nathan, A.; Katada, M.; Gates, J.; Karnovsky, M. J., Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials 2000, 21 (22), 2279-2286; (b) Jabbal-Gill, I.; Lin, W.; Kistner, O.; Davis, S. S.; Illum, L., Polymeric lamellar substrate particles for intranasal vaccination. Advanced Drug Delivery Reviews 2001, 51 (1–3), 97-111.
24.Rousseau, I. A.; Xie, T., Shape memory epoxy: Composition, structure, properties and shape memory performances. Journal of Materials Chemistry 2010, 20 (17), 3431-3441.
25.Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A., Biodegradable, Amorphous Copolyester-Urethane Networks Having Shape-Memory Properties. Angewandte Chemie International Edition 2005, 44 (8), 1188-1192.
26.Chowdhury, S. R.; Das, C. K., Structure–property correlations of heat-shrinkable polymer blends based on ethylene vinyl acetate/carboxylated nitrile rubber in the presence of different curatives. Journal of Applied Polymer Science 2003, 87 (9), 1414-1420.
27.Chun, B. C.; Cho, T. K.; Chong, M. H.; Chung, Y.-C., Structure–property relationship of shape memory polyurethane cross-linked by a polyethyleneglycol spacer between polyurethane chains. Journal of Materials Science 2007, 42 (21), 9045-9056.
28.Kobayashi, K.; Shunichi, S. 1992.
29.Bayer, O.; Siefken, W.; Rinke, H.; Orthner, L.; Schild, H., German Patent 1937, 728, 981.
30.Munich, Polyurethane handbook. G. Oertel, Hanser: 1985; Vol. 18, p 629.
31.Szycher, M., Szycher''s Handbook of Polyurethanes. CRC PressINC: 1999.
32.Cooper, S. L.; Tobolsky, A. V., Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science 1966, 10 (12), 1837-1844.
33.Kim, B. K.; Lee, S. Y.; Xu, M., Polyurethanes having shape memory effects. Polymer 1996, 37 (26), 5781-5793.
34.Ping, P.; Wang, W.; Chen, X.; Jing, X., The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (5), 557-570.
35.Lee, B. S.; Chun, B. C.; Chung, Y.-C.; Sul, K. I.; Cho, J. W., Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules 2001, 34 (18), 6431-6437.
36.Kim, B. K.; Lee, S. Y.; Lee, J. S.; Baek, S. H.; Choi, Y. J.; Lee, J. O.; Xu, M., Polyurethane ionomers having shape memory effects. Polymer 1998, 39 (13), 2803-2808.
37.Zhang, Y.; Wang, C.; Pei, X.; Wang, Q.; Wang, T., Shape memory polyurethanes containing azo exhibiting photoisomerization function. Journal of Materials Chemistry 2010, 20 (44), 9976-9981.
38.Mason, S. F., Chemical evolution: origin of the elements, molecules, and living systems. Clarendon Press: 1991.
39.Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; Hall Jr, H. K., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513.
40.Xia, F.; Jiang, L., Bio‐Inspired, Smart, Multiscale Interfacial Materials. Advanced materials 2008, 20 (15), 2842-2858.
41.Buhleier, E.; Wehner, W.; Vogtle, F., Synthesis 1978, 2, 155.
42.Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985, 17 (1), 117.
43.Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A., Starburst dendrimers. Molecular shape control. Journal of the American Chemical Society 1989, 111 (6), 2339-2341.
44.Turro, N. J.; Barton, J. K.; Tomalia, D. A., Molecular recognition and chemistry in restricted reaction spaces. Photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Accounts of Chemical Research 1991, 24 (11), 332-340.
45.Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J., Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society 1993, 115 (10), 4375-4376.
46.Grayson, S. M.; Fréchet, J. M. J., Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chemical Reviews 2001, 101 (12), 3819-3868.
47.Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry 1985, 50 (11), 2003-2004.
48.Xia, F.; Jiang, L., Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials 2008, 20 (15), 2842-2858.
49.Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2 (4), 346-349.
50.Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112 (21), 7638-7647.
51.Schlüter, A. D.; Rabe, J. P., Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition 2000, 39 (5), 864-883.
52.Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047.
53.Roovers, J.; Comanita, B., Dendrimers and dendrimer-polymer hybrids. In Branched Polymers I, Springer: 1999; pp 179-228.
54.Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications 2004, 0 (14), 1608-1609.
55.Darcos, V.; Duréault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical communications 2004, (18), 2110-2111.
56.Tomalia, D. A.; Kirchhoff, P. M., US Patent 1987, 4 (694), 064.
57.Frauenrath, H., Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Progress in Polymer Science 2005, 30 (3–4), 325-384.
58.Dai, S. A.; Juang, T.-Y.; Chen, C.-P.; Chang, H.-Y.; Kuo, W.-J.; Su, W.-C.; Jeng, R.-J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science 2007, 103 (6), 3591-3599.
59.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Jeng, R.-J., Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (3), 682-688.
60.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Wu, T.-M.; Jeng, R.-J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46 (25), 11849-11857.
61.Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
62.Lendlein, A.; Langer, R., Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296 (5573), 1673-1676.
63.Jung, Y.; Cho, J., Application of shape memory polyurethane in orthodontic. J Mater Sci: Mater Med 2010, 21 (10), 2881-2886.
64.Manzoor, A.; Jikui, L.; Mohsen, M., Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application. Science and Technology of Advanced Materials 2012, 13 (1), 015006.
65.Xu, H.; Yu, C.; Wang, S.; Malyarchuk, V.; Xie, T.; Rogers, J. A., Deformable, Programmable, and Shape-Memorizing Micro-Optics. Advanced Functional Materials 2013, 23 (26), 3299-3306.
66.Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.-M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S., Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47 (5), 1768-1776.
67.Balaban, A. T.; Ragé Schleyer, P. V., Systematic classification and nomenclature of diamond hydrocarbons—I: Graph-theoretical enumeration of polymantanes. Tetrahedron 1978, 34 (24), 3599-3609.
68.Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R., Diamonds are a Chemist''s Best Friend: Diamondoid Chemistry Beyond Adamantane. Angewandte Chemie International Edition 2008, 47 (6), 1022-1036.
69.Okamoto, S.; Onoue, S.; Kobayashi, M.; Sudo, A., Rigid triol and diol with adamantane-like core derived from naturally occurring myo-inositol and their polyaddition with diisocyanates. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (24), 3498-3505.
70.Novikov, S. S.; Khardin, A. P.; Gureyev, N. G.; Radchenko, S. S., Investigation of the chemical stability and light fastness of adamantane containing polyurethanes. Polymer Science U.S.S.R. 1976, 18 (3), 706-713.
71.Ghosh, A.; Sciamanna, S. F.; Dahl, J. E.; Liu, S.; Carlson, R. M. K.; Schiraldi, D. A., Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypropylene and polycarbonate. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (9), 1077-1089.
72.(a) Douhal, A.; Kim, S.; Zewail, A., Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 1995, 378 (6554), 260-263; (b) Greco, F.; Liguori, A.; Sindona, G.; Uccella, N., Gas-phase proton affinity of deoxyribonucleosides and related nucleobases by fast atom bombardment tandem mass spectrometry. Journal of the American Chemical Society 1990, 112 (25), 9092-9096.
73.蔡政哲, 末端官能基型規則樹枝狀高分子之合成與特性分析. 國立中興大學化學工程學系博士論文: 2008.
74.(a) Schaber, P. M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J., Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 2004, 424 (1–2), 131-142; (b) Stradella, L.; Argentero, M., A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochimica Acta 1993, 219, 315-323.
75.Caruso, S.; Foti, S.; Maravigna, P.; Montaudo, G., Mass spectral characterization of polymers. Primary thermal fragmentation processes in polyureas. Journal of Polymer Science: Polymer Chemistry Edition 1982, 20 (7), 1685-1696.
76.Mitchell, W. J.; Kopidakis, N.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E., The synthesis and properties of solution processable phenyl cored thiophene dendrimers. Journal of Materials Chemistry 2005, 15 (42), 4518-4528.
77.(a) Stutz, H., The glass temperature of dendritic polymers. Journal of Polymer Science Part B: Polymer Physics 1995, 33 (3), 333-340; (b) Wooley, K. L.; Hawker, C. J.; Pochan, J. M.; Frechet, J. M. J., Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules 1993, 26 (7), 1514-1519.
78.Srichatrapimuk, V. W.; Cooper, S. L., Infrared thermal analysis of polyurethane block polymers. Journal of Macromolecular Science, Part B: Physics 1978, 15 (2), 267-311.
79.Coleman, M. M.; Sobkowiak, M.; Pehlert, G. J.; Painter, P. C.; Iqbal, T., Infrared temperature studies of a simple polyurea. Macromolecular Chemistry and Physics 1997, 198 (1), 117-136.
80.Paik Sung, C. S.; Smith, T. W.; Sung, N. H., Properties of Segmented Polyether Poly(urethaneureas) Based of 2,4-Toluene Diisocyanate. 2. Infrared and Mechanical Studies. Macromolecules 1980, 13 (1), 117-121.
81.Chambers, J.; Jiricny, J.; Reese, C. B., The thermal decomposition of polyurethanes and polyisocyanurates. Fire and Materials 1981, 5 (4), 133-141.
82.Brunette, C. M.; Hsu, S. L.; Rossman, M.; MacKnight, W. J.; Schneider, N. S., Thermal and mechanical properties of linear segmented polyurethanes with butadiene soft segments. Polymer Engineering & Science 1981, 21 (11), 668-674.
83.Hu, C. B.; Ward, R. S.; Schneider, N. S., A new criterion of phase separation: The effect of diamine chain extenders on the properties of polyurethaneureas. Journal of applied polymer science 1982, 27 (6), 2167-2177.
84.(a) Seymour, R. W.; Cooper, S. L., Thermal Analysis of Polyurethane Block Polymers. Macromolecules 1973, 6 (1), 48-53; (b) Koberstein, J. T.; Russell, T. P., Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19 (3), 714-720; (c) Leung, L. M.; Koberstein, J. T., DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19 (3), 706-713.
85.Hesketh, T.; Van Bogart, J.; Cooper, S. L., Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering & Science 1980, 20 (3), 190-197.
86.Koberstein, J.; Galambos, A.; Leung, L., Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 1992, 25 (23), 6195-6204.
87.Chen, T. K.; Shieh, T. S.; Chui, J. Y., Studies on the First DSC Endotherm of Polyurethane Hard Segment Based on 4,4‘-Diphenylmethane Diisocyanate and 1,4-Butanediol. Macromolecules 1998, 31 (4), 1312-1320.
88.Skarja, G.; Woodhouse, K., Structure‐property relationships of degradable polyurethane elastomers containing an amino acid‐based chain extender. Journal of Applied Polymer Science 2000, 75 (12), 1522-1534.
89.Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science 2007, 52 (6), 915-1015.
90.Bogart, J. W. C. V.; Gibson, P. E.; Cooper, S. L., Structure‐property relationships in polycaprolactone‐polyurethanes. Journal of Polymer Science: Polymer Physics Edition 1983, 21 (1), 65-95.
91.Foks, J.; Janik, H.; Russo, R., Morphology, thermal and mechanical properties of solution-cast polyurethane films. European Polymer Journal 1990, 26 (3), 309-314.
92.Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T., Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 2006, 47 (9), 3073-3082.
93.MA, M.; Chawla, K., Mechanical behavior of materials. Prentice-Hall, Upper Saddle River, NJ: 1999.
94.Gu, S.; Jana, S., Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments. Polymers 2014, 6 (4), 1008-1025.
95.Ji, F. L.; Hu, J. L.; Li, T. C.; Wong, Y. W., Morphology and shape memory effect of segmented polyurethanes. Part І: With crystalline reversible phase. Polymer 2007, 48 (17), 5133-5145.
96.Kim, B. K.; Shin, Y. J.; Cho, S. M.; Jeong, H. M., Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content. Journal of Polymer Science Part B: Polymer Physics 2000, 38 (20), 2652-2657.
97.Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K., Studies on thermally stimulated shape memory effect of segmented polyurethanes. Journal of Applied Polymer Science 1997, 64 (8), 1511-1516.
98.Saralegi, A.; Foster, E. J.; Weder, C.; Eceiza, A.; Corcuera, M. A., Thermoplastic shape-memory polyurethanes based on natural oils. Smart Materials and Structures 2014, 23 (2), 025033.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top