1.Ping, P.; Wang, W.; Chen, X.; Jing, X., Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6 (2), 587-592.
2.Buehler, W. J.; Gilfrich, J. V.; Wiley, R. C., Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 1963, 34 (5), 1475-1477.
3.Sun, L.; Huang, W. M., Nature of the multistage transformation in shape memory alloys upon heating. Metal Science and Heat Treatment 2010, 51 (11), 573-578.
4.Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M. A., A review of shape memory alloy research, applications and opportunities. Materials & Design 2014, 56, 1078-1113.
5.Lai, A.; Du, Z.; Gan, C. L.; Schuh, C. A., Shape Memory and Superelastic Ceramics at Small Scales. Science 2013, 341 (6153), 1505-1508.
6.Vernon, L. B.; Vernon, H. M., Process of manufacturing articles of thermoplastic synthetic resins. Google Patents: 1941.
7.(a) Charlesby, A., Pergamon Press,Oxford, 1960, 198, Atomic Radiation and Polymers. Pergamon Press: 1960; p 556; (b) Ota, S., Current status of irradiated heat-shrinkable tubing in Japan. Radiation Physics and Chemistry (1977) 1981, 18 (1–2), 81-87; (c) Machi, S., New trends of radiation processing applications. Radiation Physics and Chemistry 1996, 47 (3), 333-336; (d) Hitov, J. J.; Rainer, W. C.; Redding, E. M.; Sloan, A. W.; Stewart, W. D., Polyethylene product and process. Google Patents: 1964.
8.(a) Gandini, A., The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science 2013, 38 (1), 1-29; (b) Defize, T.; Riva, R.; Raquez, J.-M.; Dubois, P.; Jérôme, C.; Alexandre, M., Thermoreversibly Crosslinked Poly(ε-caprolactone) as Recyclable Shape-Memory Polymer Network. Macromolecular Rapid Communications 2011, 32 (16), 1264-1269.
9.Lendlein, A.; Jiang, H.; Junger, O.; Langer, R., Light-induced shape-memory polymers. Nature 2005, 434 (7035), 879-882.
10.(a) Chen, S.; Hu, J.; Zhuo, H.; Yuen, C.; Chan, L., Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 2010, 51 (1), 240-248; (b) Chen, S.; Hu, J.; Yuen, C.-w.; Chan, L., Supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Materials Letters 2009, 63 (17), 1462-1464.
11.(a) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W., Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278 (5343), 1601-1604; (b) Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K. L.; Maitland, D. J.; Voit, W., Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules 2012, 45 (2), 1062-1069; (c) Li, J.; Viveros, J. A.; Wrue, M. H.; Anthamatten, M., Shape-Memory Effects in Polymer Networks Containing Reversibly Associating Side-Groups. Advanced Materials 2007, 19 (19), 2851-2855.
12.Guo, M.; Pitet, L. M.; Wyss, H. M.; Vos, M.; Dankers, P. Y. W.; Meijer, E. W., Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. Journal of the American Chemical Society 2014, 136 (19), 6969-6977.
13.Shirai, Y.; Hayashi, S., Mitsubishi Tech. Bull. 1988, 184, 213.
14.Bae, C. Y.; Park, J. H.; Kim, E. Y.; Kang, Y. S.; Kim, B. K., Organic-inorganic nanocomposite bilayers with triple shape memory effect. Journal of Materials Chemistry 2011, 21 (30), 11288-11295.
15.Wang, M.; Zhang, L., Recovery as a measure of oriented crystalline structure in poly (ether ester) s based on poly (ethylene oxide) and poly (ethylene terephthalate) used as shape memory polymers. Journal of Polymer Science Part B: Polymer Physics 1999, 37 (2), 101-112.
16.Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M. C.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
17.Gu, X.; Mather, P. T., Entanglement-based shape memory polyurethanes: synthesis and characterization. Polymer 2012, 53 (25), 5924-5934.
18.Zhao, Q.; Qi, H. J.; Xie, T., Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science 2015, 49, 79-120.
19.Hu, J.; Chen, S., A review of actively moving polymers in textile applications. Journal of Materials Chemistry 2010, 20 (17), 3346-3355.
20.Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S., Shape memory polymers: Past, present and future developments. Progress in Polymer Science 2015, 49–50, 3-33.
21.Lendlein, A.; Kelch, S., Shape‐memory polymers. Angewandte Chemie International Edition 2002, 41 (12), 2034-2057.
22.Liu, C.; Qin, H.; Mather, P., Review of progress in shape-memory polymers. Journal of Materials Chemistry 2007, 17 (16), 1543-1558.
23.(a) Edelman, E. R.; Nathan, A.; Katada, M.; Gates, J.; Karnovsky, M. J., Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials 2000, 21 (22), 2279-2286; (b) Jabbal-Gill, I.; Lin, W.; Kistner, O.; Davis, S. S.; Illum, L., Polymeric lamellar substrate particles for intranasal vaccination. Advanced Drug Delivery Reviews 2001, 51 (1–3), 97-111.
24.Rousseau, I. A.; Xie, T., Shape memory epoxy: Composition, structure, properties and shape memory performances. Journal of Materials Chemistry 2010, 20 (17), 3431-3441.
25.Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A., Biodegradable, Amorphous Copolyester-Urethane Networks Having Shape-Memory Properties. Angewandte Chemie International Edition 2005, 44 (8), 1188-1192.
26.Chowdhury, S. R.; Das, C. K., Structure–property correlations of heat-shrinkable polymer blends based on ethylene vinyl acetate/carboxylated nitrile rubber in the presence of different curatives. Journal of Applied Polymer Science 2003, 87 (9), 1414-1420.
27.Chun, B. C.; Cho, T. K.; Chong, M. H.; Chung, Y.-C., Structure–property relationship of shape memory polyurethane cross-linked by a polyethyleneglycol spacer between polyurethane chains. Journal of Materials Science 2007, 42 (21), 9045-9056.
28.Kobayashi, K.; Shunichi, S. 1992.
29.Bayer, O.; Siefken, W.; Rinke, H.; Orthner, L.; Schild, H., German Patent 1937, 728, 981.
30.Munich, Polyurethane handbook. G. Oertel, Hanser: 1985; Vol. 18, p 629.
31.Szycher, M., Szycher''s Handbook of Polyurethanes. CRC PressINC: 1999.
32.Cooper, S. L.; Tobolsky, A. V., Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science 1966, 10 (12), 1837-1844.
33.Kim, B. K.; Lee, S. Y.; Xu, M., Polyurethanes having shape memory effects. Polymer 1996, 37 (26), 5781-5793.
34.Ping, P.; Wang, W.; Chen, X.; Jing, X., The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (5), 557-570.
35.Lee, B. S.; Chun, B. C.; Chung, Y.-C.; Sul, K. I.; Cho, J. W., Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules 2001, 34 (18), 6431-6437.
36.Kim, B. K.; Lee, S. Y.; Lee, J. S.; Baek, S. H.; Choi, Y. J.; Lee, J. O.; Xu, M., Polyurethane ionomers having shape memory effects. Polymer 1998, 39 (13), 2803-2808.
37.Zhang, Y.; Wang, C.; Pei, X.; Wang, Q.; Wang, T., Shape memory polyurethanes containing azo exhibiting photoisomerization function. Journal of Materials Chemistry 2010, 20 (44), 9976-9981.
38.Mason, S. F., Chemical evolution: origin of the elements, molecules, and living systems. Clarendon Press: 1991.
39.Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; Hall Jr, H. K., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513.
40.Xia, F.; Jiang, L., Bio‐Inspired, Smart, Multiscale Interfacial Materials. Advanced materials 2008, 20 (15), 2842-2858.
41.Buhleier, E.; Wehner, W.; Vogtle, F., Synthesis 1978, 2, 155.
42.Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985, 17 (1), 117.
43.Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A., Starburst dendrimers. Molecular shape control. Journal of the American Chemical Society 1989, 111 (6), 2339-2341.
44.Turro, N. J.; Barton, J. K.; Tomalia, D. A., Molecular recognition and chemistry in restricted reaction spaces. Photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Accounts of Chemical Research 1991, 24 (11), 332-340.
45.Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J., Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society 1993, 115 (10), 4375-4376.
46.Grayson, S. M.; Fréchet, J. M. J., Convergent Dendrons and Dendrimers: from Synthesis to Applications. Chemical Reviews 2001, 101 (12), 3819-3868.
47.Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry 1985, 50 (11), 2003-2004.
48.Xia, F.; Jiang, L., Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials 2008, 20 (15), 2842-2858.
49.Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2 (4), 346-349.
50.Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112 (21), 7638-7647.
51.Schlüter, A. D.; Rabe, J. P., Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition 2000, 39 (5), 864-883.
52.Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047.
53.Roovers, J.; Comanita, B., Dendrimers and dendrimer-polymer hybrids. In Branched Polymers I, Springer: 1999; pp 179-228.
54.Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications 2004, 0 (14), 1608-1609.
55.Darcos, V.; Duréault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical communications 2004, (18), 2110-2111.
56.Tomalia, D. A.; Kirchhoff, P. M., US Patent 1987, 4 (694), 064.
57.Frauenrath, H., Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Progress in Polymer Science 2005, 30 (3–4), 325-384.
58.Dai, S. A.; Juang, T.-Y.; Chen, C.-P.; Chang, H.-Y.; Kuo, W.-J.; Su, W.-C.; Jeng, R.-J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science 2007, 103 (6), 3591-3599.
59.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Jeng, R.-J., Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (3), 682-688.
60.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Wu, T.-M.; Jeng, R.-J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46 (25), 11849-11857.
61.Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
62.Lendlein, A.; Langer, R., Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296 (5573), 1673-1676.
63.Jung, Y.; Cho, J., Application of shape memory polyurethane in orthodontic. J Mater Sci: Mater Med 2010, 21 (10), 2881-2886.
64.Manzoor, A.; Jikui, L.; Mohsen, M., Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application. Science and Technology of Advanced Materials 2012, 13 (1), 015006.
65.Xu, H.; Yu, C.; Wang, S.; Malyarchuk, V.; Xie, T.; Rogers, J. A., Deformable, Programmable, and Shape-Memorizing Micro-Optics. Advanced Functional Materials 2013, 23 (26), 3299-3306.
66.Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.-M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S., Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47 (5), 1768-1776.
67.Balaban, A. T.; Ragé Schleyer, P. V., Systematic classification and nomenclature of diamond hydrocarbons—I: Graph-theoretical enumeration of polymantanes. Tetrahedron 1978, 34 (24), 3599-3609.
68.Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R., Diamonds are a Chemist''s Best Friend: Diamondoid Chemistry Beyond Adamantane. Angewandte Chemie International Edition 2008, 47 (6), 1022-1036.
69.Okamoto, S.; Onoue, S.; Kobayashi, M.; Sudo, A., Rigid triol and diol with adamantane-like core derived from naturally occurring myo-inositol and their polyaddition with diisocyanates. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (24), 3498-3505.
70.Novikov, S. S.; Khardin, A. P.; Gureyev, N. G.; Radchenko, S. S., Investigation of the chemical stability and light fastness of adamantane containing polyurethanes. Polymer Science U.S.S.R. 1976, 18 (3), 706-713.
71.Ghosh, A.; Sciamanna, S. F.; Dahl, J. E.; Liu, S.; Carlson, R. M. K.; Schiraldi, D. A., Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypropylene and polycarbonate. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (9), 1077-1089.
72.(a) Douhal, A.; Kim, S.; Zewail, A., Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 1995, 378 (6554), 260-263; (b) Greco, F.; Liguori, A.; Sindona, G.; Uccella, N., Gas-phase proton affinity of deoxyribonucleosides and related nucleobases by fast atom bombardment tandem mass spectrometry. Journal of the American Chemical Society 1990, 112 (25), 9092-9096.
73.蔡政哲, 末端官能基型規則樹枝狀高分子之合成與特性分析. 國立中興大學化學工程學系博士論文: 2008.74.(a) Schaber, P. M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J., Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 2004, 424 (1–2), 131-142; (b) Stradella, L.; Argentero, M., A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochimica Acta 1993, 219, 315-323.
75.Caruso, S.; Foti, S.; Maravigna, P.; Montaudo, G., Mass spectral characterization of polymers. Primary thermal fragmentation processes in polyureas. Journal of Polymer Science: Polymer Chemistry Edition 1982, 20 (7), 1685-1696.
76.Mitchell, W. J.; Kopidakis, N.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E., The synthesis and properties of solution processable phenyl cored thiophene dendrimers. Journal of Materials Chemistry 2005, 15 (42), 4518-4528.
77.(a) Stutz, H., The glass temperature of dendritic polymers. Journal of Polymer Science Part B: Polymer Physics 1995, 33 (3), 333-340; (b) Wooley, K. L.; Hawker, C. J.; Pochan, J. M.; Frechet, J. M. J., Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules 1993, 26 (7), 1514-1519.
78.Srichatrapimuk, V. W.; Cooper, S. L., Infrared thermal analysis of polyurethane block polymers. Journal of Macromolecular Science, Part B: Physics 1978, 15 (2), 267-311.
79.Coleman, M. M.; Sobkowiak, M.; Pehlert, G. J.; Painter, P. C.; Iqbal, T., Infrared temperature studies of a simple polyurea. Macromolecular Chemistry and Physics 1997, 198 (1), 117-136.
80.Paik Sung, C. S.; Smith, T. W.; Sung, N. H., Properties of Segmented Polyether Poly(urethaneureas) Based of 2,4-Toluene Diisocyanate. 2. Infrared and Mechanical Studies. Macromolecules 1980, 13 (1), 117-121.
81.Chambers, J.; Jiricny, J.; Reese, C. B., The thermal decomposition of polyurethanes and polyisocyanurates. Fire and Materials 1981, 5 (4), 133-141.
82.Brunette, C. M.; Hsu, S. L.; Rossman, M.; MacKnight, W. J.; Schneider, N. S., Thermal and mechanical properties of linear segmented polyurethanes with butadiene soft segments. Polymer Engineering & Science 1981, 21 (11), 668-674.
83.Hu, C. B.; Ward, R. S.; Schneider, N. S., A new criterion of phase separation: The effect of diamine chain extenders on the properties of polyurethaneureas. Journal of applied polymer science 1982, 27 (6), 2167-2177.
84.(a) Seymour, R. W.; Cooper, S. L., Thermal Analysis of Polyurethane Block Polymers. Macromolecules 1973, 6 (1), 48-53; (b) Koberstein, J. T.; Russell, T. P., Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19 (3), 714-720; (c) Leung, L. M.; Koberstein, J. T., DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19 (3), 706-713.
85.Hesketh, T.; Van Bogart, J.; Cooper, S. L., Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering & Science 1980, 20 (3), 190-197.
86.Koberstein, J.; Galambos, A.; Leung, L., Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 1992, 25 (23), 6195-6204.
87.Chen, T. K.; Shieh, T. S.; Chui, J. Y., Studies on the First DSC Endotherm of Polyurethane Hard Segment Based on 4,4‘-Diphenylmethane Diisocyanate and 1,4-Butanediol. Macromolecules 1998, 31 (4), 1312-1320.
88.Skarja, G.; Woodhouse, K., Structure‐property relationships of degradable polyurethane elastomers containing an amino acid‐based chain extender. Journal of Applied Polymer Science 2000, 75 (12), 1522-1534.
89.Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science 2007, 52 (6), 915-1015.
90.Bogart, J. W. C. V.; Gibson, P. E.; Cooper, S. L., Structure‐property relationships in polycaprolactone‐polyurethanes. Journal of Polymer Science: Polymer Physics Edition 1983, 21 (1), 65-95.
91.Foks, J.; Janik, H.; Russo, R., Morphology, thermal and mechanical properties of solution-cast polyurethane films. European Polymer Journal 1990, 26 (3), 309-314.
92.Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T., Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 2006, 47 (9), 3073-3082.
93.MA, M.; Chawla, K., Mechanical behavior of materials. Prentice-Hall, Upper Saddle River, NJ: 1999.
94.Gu, S.; Jana, S., Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments. Polymers 2014, 6 (4), 1008-1025.
95.Ji, F. L.; Hu, J. L.; Li, T. C.; Wong, Y. W., Morphology and shape memory effect of segmented polyurethanes. Part І: With crystalline reversible phase. Polymer 2007, 48 (17), 5133-5145.
96.Kim, B. K.; Shin, Y. J.; Cho, S. M.; Jeong, H. M., Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content. Journal of Polymer Science Part B: Polymer Physics 2000, 38 (20), 2652-2657.
97.Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K., Studies on thermally stimulated shape memory effect of segmented polyurethanes. Journal of Applied Polymer Science 1997, 64 (8), 1511-1516.
98.Saralegi, A.; Foster, E. J.; Weder, C.; Eceiza, A.; Corcuera, M. A., Thermoplastic shape-memory polyurethanes based on natural oils. Smart Materials and Structures 2014, 23 (2), 025033.