跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖千宜
研究生(外文):Chien-Yi Liao
論文名稱:奈米黏土改質方法及其吸油和儲能應用
論文名稱(外文):Modification of Nanoclays for Crude Oil Absorption and Heat Storage Applications
指導教授:林江珍
口試委員:謝國煌鄭如忠黃慶怡童世煌宋清潭蔣見超何永盛李宗銘
口試日期:2016-06-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:97
中文關鍵詞:蒙脫土插層奈米容器原油吸附相轉變材料
外文關鍵詞:MontmorilloniteMMTintercalationorgano-containercrude oil absorptionphase change materialPCM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討奈米黏土之改質與應用。天然奈米黏土,例如蒙脫土為一親水性層狀結構,黏土表面帶負電荷,而其層間或黏土邊緣帶有不同價數的陽離子,例如: 鈉離子、鎂離子、鋁離子等以維持電荷平衡。由於蒙脫土具有 1.2 mequiv./g 之陽離子可交換當量,故可藉由將有機胺鹽或磷酸鹽酸化等方式,與黏土層間之鈉離子進行離子交換,使奈米黏土層間具有親油性質。
蒙脫土經有機胺鹽離子交換進行插層後,有機胺鹽彼此間之立體障礙及疏水性排斥力,使得奈米黏土層間距可由原本 12 Å 增大至 52 Å~ 74 Å 不等。由於經插層改質後的奈米黏土之層間具親油性,故可吸引有機或油性物質進入黏土層間距,而此時奈米黏土之層間距可再進一步增大甚至達無序脫層狀態。
利用奈米黏土經有機插層而具親油性,以及插層和吸附有機物質後其層間距可進一步增大而可容量更多有機物質的特性,本研究主軸為將有機改質後的奈米黏土作為一奈米容器,探討經不同插層劑改質之蒙脫土對於原油吸附與回收之效果,另亦將之用以吸附相轉變材料,作為一儲熱奈米容器。本研究總共分三部分,其目標分述如下。
第一部分將蒙脫土以高分子有機胺鹽進行插層,比較不同胺基數目及分子量的高分子有機胺鹽插層後的有機黏土對於水中原油吸附效果。此外,此研究中所選用之有機胺鹽具有低臨界相轉變溫度,於低溫下可藉由分子間氫鍵均勻分散於水中並吸附原油;當溫度升高至相轉變溫度時,氫鍵遭破壞而有機黏土將聚集成團,利用此溫度變化而相轉變特性,吸附原油後之有機黏土可容易地進行回收。實驗結果發現高分子有機黏土吸附原油之最佳效能可達有機黏土重量之 15 倍。
第二部分則選用小分子有機胺鹽 (十八烷基胺) 對於蒙脫土進行插層並探討其吸附原油效能。以十八烷基胺鹽插層後之有機黏土對原油吸附最佳效能可達 6 倍之有機黏土重。和第一部分高分子胺鹽插層有機黏土不同的是十八烷基胺鹽改質之蒙脫土於室溫下吸附原油後,不需經溫度轉換即可自動產生聚集而從水相分離。除同樣具有容易回收之特性外,吸附原油後的有機黏土可藉由萃取將吸附於層間的原油分離出來而不破壞有機黏土本身結構。故此有機黏土可再次進行使用,實驗結果發現此有機黏土重覆使用之吸附效能具有高度穩定性,且有機黏土萃取後之回收率可高達九成以上,為一環境友善之原油除污材料。
第三部分同樣使用十八烷基胺鹽插層之有機黏土,此部分研究中將有機黏土作為一儲熱奈米容器。實驗結果發現此有機黏土對於石蠟 (固-液相轉變材料) 之吸附效能可達 5.6 倍,可將石蠟固定於黏土層間中,即使加熱至高溫,石臘亦未見因相轉變而瀉出現象。此有機黏土除可固定石蠟外,石蠟之熱焓值轉化效能可高達 100% ,故其可作為一優異的儲熱奈米容器,未來可應用於建材等需求上。

The object of this research is studying the modification method and applications of nanoclays. The primary unit of MMT is comprised by layered stacks, and contains 8 to 10 sheets per stack. The dimension of nature clay, for example, montmorillonite (MMT) with layered structure is 1 x 100 x 100 nm3 for each sheet. There are large amounts of cations existing in clay layers, such as sodium ions, magnesium ions, calcium ions, and aluminum ions. The cationic exchange capacity of MMT is 1.2 mequiv./g. Hence, the MMT can be modified by acidifying organic ammonium salts and exchanging with sodium ions.
After the organic ammonium salts intercalation, the d spacing of MMT could be expanded from 12 Å to 52 Å or to 74 Å. The organic intercalation would introduce the hydrophobic characteristic into clay layers and make the modified MMT has hydrophobic affinity which can absorb organic materials into clay spacing. In this case, the d spacing of intercalated MMT could be further expanded. Thus, the hydrophobic affinity and layered expandable characteristics make organoclay could be used as an organo-container to absorb and store organic materials.
In this research, the organic modified MMT was treated as an organo-container to absorb crude oil and paraffin.
For the crude oil absorption, the organoclay was intercalated by poly(oxyalkylene) amines. To compare with mono-amine or di-amine with different molecular weight, the highest crude oil absorption efficiency is the organoclay which was intercalated by mono-amine and the efficacy is up to 15 folds weight over organoclay. Except for the high absorption efficiency, there is another unique characteristic, lower critical solubility temperature (LCST) of these organoclays. The poly(oxyalkylene) ammonium salts intercalated organoclay could be homogeneously dispersed with crude oil and water under lower temperature, and aggregated into lumps and clearly separated from water phase that the crude oil could be removed easily.
Furthermore, we used n-Octadecyl amine (ODA) to modify MMT and used to absorb crude oil. The absorption efficiency of ODA/MMT is 6 folds over organoclay. The ODA/MMT would be self-aggregated after absorbing crude oil and clearly separated from water phase under ambient temperature. The most important thing is that the ODA/MMT could be recovered from toluene extraction which the crude oil can be removed without destroying the structure of ODA/MMT. The ODA/MMT could be reused for several times with stably performance and the recovery was up to 90%. Thus, the ODA/MMT can be used as an environment friendly materials to remedy the water contaminant.
In the third section, we used ODA/MMT as a heat storage organo-container. The ODA/MMT was used to absorb octadecane, a kind of phase change material (PCM). The absorption efficiency is 5.6 folds over organoclay when using 1.0 CEC intercalated ODA/MMT. The phase transition temperature of octadecane is about 25-29 °C, and the shape of octadecane could be fixed when absorbing by ODA/MMT. Moreover, the enthalpy transition of ODA/MMT/Paraffin reaches to 100%. Hence, the ODA modified organoclay is an excellent organo-container which can be used as a heat storing material.


謝誌 I
中文摘要 II
Abstract IV
Index VI
List of Figures IX
List of Tables XII
List of Schemes XIII
Chapter 1. Introduction 1
1.1. Fundamental structure of clay 1
1.2. Intercalation of layered clays 5
1.3. Exfoliation of layered clays 18
1.3.1. Two-step process: polymer-clay nanocomposite 18
1.3.2. Phase inversion of amphiphilic copolymer emulsion 19
1.3.3. Mannich reaction to exfoliate clays 21
1.3.4. Exfoliating clays through partially acidification polyamines and extraction with NaOH 25
1.4. Applications of intercalated and exfoliated silicate clays 32
Chapter 2. Temperature-Dependent Oil Absorption of Poly(oxypropylene)amine- Intercalated Clays for Environmental Remediation 33
2.1. Abstract 33
2.2. Introduction 34
2.3. Experimental section 37
2.3.1 Materials 37
2.3.2 Preparation of organically modified clay 38
2.3.3 Determination of lower critical aggregation temperature (LCAT) for organoclays 38
2.3.4. The efficiency of oil absorption 39
2.3.5. Characterization 40
2.4. Results and discussion 40
2.4.1. Intercalation of MMT with polyether-amine salts 40
2.4.2 Temperature-dependent aggregation of the organoclays 44
2.4.3. Oil-absorbing efficiency 46
2.4.4. Oil/Water separation 50
2.5. Conclusion 53
Chapter 3. Recyclability of Organically Modified Clays for Oil Absorption and Recovery 54
3.1. Abstract 54
3.2. Introduction 55
3.3. Experimental section 57
3.3.1. Materials 57
3.3.2. Preparation of organoclays 58
3.3.3. Efficiency of oil absorption 58
3.3.4. Characterization 58
3.4. Results and discussions 59
3.4.1. Intercalation of Na+-MMT with n-octadecylamine-salt 59
3.4.2. Oil absorption and spacing change of the layered silicate clays 61
3.4.3. Oil absorption efficacy 63
3.4.4. Oil recovery by absorption-desorption cycle 65
3.5. Conclusion 68
Chapter 4. The Thermal Storage of Fatty Amine Modified Silicate Clays as an Organo-Container 69
4.1. Abstract 69
4.2. Introduction 70
4.3. Experimental section 72
4.3.1. Materials 72
4.3.2. Preparation of octadecylamine intercalated organoclay 72
4.3.3. Preparation of the form-stable composite phase change material 73
4.3.4. Characterization 73
4.4. Results and discussion 74
4.4.1. Preparation of organoclay with n-octadecylamine salt 74
4.4.2. Absorption of phase change material by organoclay 76
4.4.3. The absorption efficiency of organoclay 79
4.4.4. The thermal properties of paraffin in ODA/MMT 82
4.5. Conclusion 85
Chapter 5. Summary 86
Chapter 6. Reference 87

1.Theng, B. K. G., The Chemistry of Clay-organic Reactions. Wiley: 1974.
2.Theng, B. K. G., Formation and Properties of Clay-polymer Complexes. Elsevier: 2012.
3.Lai, Y.-H.; Chiu, C.-W.; Chen, J.-G.; Wang, C.-C.; Lin, J.-J.; Lin, K.-F.; Ho, K.-C., Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar Energy Materials and Solar Cells 2009, 93 (10), 1860-1864.
4.Tateyama, H.; Nishimura, S.; Tsunematsu, K.; Jinnai, K.; Adachi, Y.; Kimura, M., Synthesis of expandable fluorine mica from talc. Clays and Clay Minerals 1992, 40 (2), 180-185.
5.Kodama, T.; Higuchi, T.; Shimizu, T.; Shimizu, K.-i.; Komarneni, S.; Hoffbauer, W.; Schneider, H., Synthesis of Na-2-mica from metakaolin and its cation exchange properties. Journal of Materials Chemistry 2001, 11 (8), 2072-2077.
6.Chiu, C.-W.; Chu, C.-C.; Dai, S. A.; Lin, J.-J., Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets. The Journal of Physical Chemistry C 2008, 112 (46), 17940-17944.
7.Rives, V.; Angeles Ulibarri, M. a., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews 1999, 181 (1), 61-120.
8.Rives, V., Characterisation of layered double hydroxides and their decomposition products. Materials Chemistry and Physics 2002, 75 (1–3), 19-25.
9.Khan, A. I.; O''Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry 2002, 12 (11), 3191-3198.
10.LASZLO, P., Chemical Reactions on Clays. Science 1987, 235 (4795), 1473-1477.
11.Cseri, T.; Békássy, S.; Figueras, F.; Rizner, S., Benzylation of aromatics on ion-exchanged clays. Journal of Molecular Catalysis A: Chemical 1995, 98 (2), 101-107.
12.Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H., Cation-exchanged montmorillonite catalyzed hydration of styrene derivatives. Journal of Molecular Catalysis A: Chemical 1997, 126 (1), 55-60.
13.Pinnavaia, T. J., Intercalated Clay Catalysts. Science 1983, 220 (4595), 365-371.
14.Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, T. L. M.; Buglass, J. G., Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396 (6709), 353-356.
15.Celis, R.; Hermosín, M. C.; Carrizosa, M. J.; Cornejo, J., Inorganic and Organic Clays as Carriers for Controlled Release of the Herbicide Hexazinone. Journal of Agricultural and Food Chemistry 2002, 50 (8), 2324-2330.
16.Rawajfih, Z.; Nsour, N., Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science 2006, 298 (1), 39-49.
17.Király, Z.; Veisz, B.; Mastalir, Á.; Köfaragó, G., Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants:  Catalytic Probes in Hydrogenations. Langmuir 2001, 17 (17), 5381-5387.
18.Giannelis, E. P., Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Applied Organometallic Chemistry 1998, 12 (10-11), 675-680.
19.Chiu, C.-W.; Lin, J.-J., Self-assembly behavior of polymer-assisted clays. Progress in Polymer Science 2012, 37 (3), 406-444.
20.Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485.
21.Jiang-Jen, L. I. N.; Jein, C. I.; Chien-Chia, C. H. U., High Compatibility of the Poly(oxypropylene)amine-Intercalated Montmorillonite for Epoxy. Polymer Journal 2003, 35 (5), 411-416.
22.Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates. Chemistry of Materials 1994, 6 (7), 1017-1022.
23.Ganguly, S.; Dana, K.; Mukhopadhyay, T. K.; Ghatak, S., SIMULTANEOUS INTERCALATION OF TWO QUATERNARY PHOSPHONIUM SALTS INTO MONTMORILLONITE. Clays and Clay Minerals 2011, 59 (1), 13-20.
24.Wu, T.; Xie, A. G.; Tan, S.-Z.; Cai, X., Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids and Surfaces B: Biointerfaces 2011, 86 (1), 232-236.
25.Bottino, F. A.; Fabbri, E.; Fragalà, I. L.; Malandrino, G.; Orestano, A.; Pilati, F.; Pollicino, A., Polystyrene-Clay Nanocomposites Prepared with Polymerizable Imidazolium Surfactants. Macromolecular Rapid Communications 2003, 24 (18), 1079-1084.
26.Fox, D. M.; Maupin, P. H.; Harris, R. H.; Gilman, J. W.; Eldred, D. V.; Katsoulis, D.; Trulove, P. C.; De Long, H. C., Use of a Polyhedral Oligomeric Silsesquioxane (POSS)-Imidazolium Cation as an Organic Modifier for Montmorillonite. Langmuir 2007, 23 (14), 7707-7714.
27.Wang, Z. M.; Chung, T. C.; Gilman, J. W.; Manias, E., Melt-processable syndiotactic polystyrene/montmorillonite nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (24), 3173-3187.
28.Gilman, J. W.; Awad, W. H.; Davis, R. D.; Shields, J.; Harris, R. H.; Davis, C.; Morgan, A. B.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; DeLong, H. C., Polymer/Layered Silicate Nanocomposites from Thermally Stable Trialkylimidazolium-Treated Montmorillonite. Chemistry of Materials 2002, 14 (9), 3776-3785.
29.Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O., Swelling behavior of montmorillonite cation exchanged for ω-amino acids by -caprolactam. Journal of Materials Research 1993, 8 (05), 1174-1178.
30.Franco, R.; Brasil, C.; Mantovani, G.; Azevedo, E.; Bonagamba, T., Molecular Dynamics of Poly(Ethylene Glycol) Intercalated in Clay, Studied Using 13C Solid-State NMR. Materials 2013, 6 (1), 47.
31.Ratnayake, U. N.; Prematunga, D. E.; Peiris, C.; Karunaratne, V.; Amaratunga, G. A., Effect of polyethylene glycol-intercalated organoclay on vulcanization characteristics and reinforcement of natural rubber nanocomposites. Journal of Elastomers and Plastics 2015.
32.Chou, C.-C.; Shieu, F.-S.; Lin, J.-J., Preparation, Organophilicity, and Self-Assembly of Poly(oxypropylene)amine−Clay Hybrids. Macromolecules 2003, 36 (7), 2187-2189.
33.Lin, J.-J.; Chen, I. J.; Chou, C.-C., Critical Conformational Change of Poly(oxypropylene)diamines in Layered Aluminosilicate Confinement. Macromolecular Rapid Communications 2003, 24 (8), 492-495.
34.Chiou, J.-Y.; Hsu, R.-S.; Chiu, C.-W.; Lin, J.-J., A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Advances 2013, 3 (31), 12847-12854.
35.Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O., Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (4), 983-986.
36.Fu, X.; Qutubuddin, S., Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 2001, 42 (2), 807-813.
37.Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. C., Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chemistry of Materials 2001, 13 (10), 3516-3523.
38.Gopakumar, T. G.; Lee, J. A.; Kontopoulou, M.; Parent, J. S., Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 2002, 43 (20), 5483-5491.
39.Fu, X.; Qutubuddin, S., Synthesis of polystyrene–clay nanocomposites. Materials Letters 2000, 42 (1–2), 12-15.
40.Chou, C.-C.; Lin, J.-J., One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005, 38 (2), 230-233.
41.Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38 (15), 6240-6243.
42.Lin, J.-J.; Chu, C.-C.; Chiang, M.-L.; Tsai, W.-C., First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. The Journal of Physical Chemistry B 2006, 110 (37), 18115-18120.
43.Chiu, C.-W.; Chu, C.-C.; Cheng, W.-T.; Lin, J.-J., Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. European Polymer Journal 2008, 44 (3), 628-636.
44.Giannelis, E. P., Polymer Layered Silicate Nanocomposites. Advanced Materials 1996, 8 (1), 29-35.
45.Lan, T.; Pinnavaia, T. J., Clay-Reinforced Epoxy Nanocomposites. Chemistry of Materials 1994, 6 (12), 2216-2219.
46.Messersmith, P. B.; Giannelis, E. P., Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites. Chemistry of Materials 1994, 6 (10), 1719-1725.
47.Wang, M. S.; Pinnavaia, T. J., Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin. Chemistry of Materials 1994, 6 (4), 468-474.
48.Yang, C.; Kaipa, U.; Mather, Q. Z.; Wang, X.; Nesterov, V.; Venero, A. F.; Omary, M. A., Fluorous Metal–Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage. Journal of the American Chemical Society 2011, 133 (45), 18094-18097.
49.Schaum, J.; Cohen, M.; Perry, S.; Artz, R.; Draxler, R.; Frithsen, J. B.; Heist, D.; Lorber, M.; Phillips, L., Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill. Environmental Science & Technology 2010, 44 (24), 9383-9389.
50.Nonomura, Y.; Kobayashi, N., Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles. Journal of Colloid and Interface Science 2009, 330 (2), 463-466.
51.Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A., Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano 2012, 6 (6), 5413-5419.
52.Wu, L.; Li, L.; Li, B.; Zhang, J.; Wang, A., Magnetic, Durable, and Superhydrophobic Polyurethane@Fe3O4@SiO2@Fluoropolymer Sponges for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Interfaces 2015, 7 (8), 4936-4946.
53.Zhou, X.; Zhang, Z.; Xu, X.; Men, X.; Zhu, X., Facile Fabrication of Superhydrophobic Sponge with Selective Absorption and Collection of Oil from Water. Industrial & Engineering Chemistry Research 2013, 52 (27), 9411-9416.
54.Broje, V.; Keller, A. A., Effect of operational parameters on the recovery rate of an oleophilic drum skimmer. Journal of Hazardous Materials 2007, 148 (1–2), 136-143.
55.Feng, J.; Hu, X.; Yue, P. L., Novel Bentonite Clay-Based Fe−Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II. Environmental Science & Technology 2003, 38 (1), 269-275.
56.Lin, J.-J.; Chan, Y.-N.; Lan, Y.-F., Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. Materials 2010, 3 (4), 2588-2605.
57.Kumar, A. P.; Depan, D.; Singh Tomer, N.; Singh, R. P., Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Progress in Polymer Science 2009, 34 (6), 479-515.
58.Newman, A. C. D., Chemistry of clays and clay minerals. Wiley: 1987.
59.Hsu, R.-S.; Chang, W.-H.; Lin, J.-J., Nanohybrids of Magnetic Iron-Oxide Particles in Hydrophobic Organoclays for Oil Recovery. ACS Applied Materials & Interfaces 2010, 2 (5), 1349-1354.
60.Teas, C.; Kalligeros, S.; Zanikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G., Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 2001, 140 (3), 259-264.
61.Wang, J.; Wang, Q.; Zheng, Y.; Wang, A., Synthesis and oil absorption of poly(butylmethacrylate)/organo-attapulgite nanocomposite by suspended emulsion polymerization. Polymer Composites 2013, 34 (2), 274-281.
62.Sayyad Amin, J.; Vared Abkenar, M.; Zendehboudi, S., Natural Sorbent for Oil Spill Cleanup from Water Surface: Environmental Implication. Industrial & Engineering Chemistry Research 2015, 54 (43), 10615-10621.
63.Mullin, J. V.; Champ, M. A., Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin 2003, 8 (4), 323-330.
64.Bellino, P. W.; Rangwala, A. S.; Flynn, M. R., A study of in situ burning of crude oil in an ice channel. Proceedings of the Combustion Institute 2013, 34 (2), 2539-2546.
65.Das, G.; Kalita, R. D.; Deka, H.; Buragohain, A. K.; Karak, N., Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites. Progress in Organic Coatings 2013, 76 (7–8), 1103-1111.
66.Ugochukwu, U. C.; Jones, M. D.; Head, I. M.; Manning, D. A. C.; Fialips, C. I., Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. International Biodeterioration & Biodegradation 2014, 88, 185-191.
67.Ugochukwu, U. C.; Manning, D. A. C.; Fialips, C. I., Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds. Journal of Environmental Management 2014, 142, 30-35.
68.Okiel, K.; El-Sayed, M.; El-Kady, M. Y., Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum 2011, 20 (2), 9-15.
69.Arbatan, T.; Fang, X.; Shen, W., Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chemical Engineering Journal 2011, 166 (2), 787-791.
70.Xue, Z.; Sun, Z.; Cao, Y.; Chen, Y.; Tao, L.; Li, K.; Feng, L.; Fu, Q.; Wei, Y., Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil-water separation. RSC Advances 2013, 3 (45), 23432-23437.
71.Choi, S.-J.; Kwon, T.-H.; Im, H.; Moon, D.-I.; Baek, D. J.; Seol, M.-L.; Duarte, J. P.; Choi, Y.-K., A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Applied Materials & Interfaces 2011, 3 (12), 4552-4556.
72.Wang, S.; Li, M.; Lu, Q., Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. ACS Applied Materials & Interfaces 2010, 2 (3), 677-683.
73.Zhou, X.-M.; Chuai, C.-Z., Synthesis and characterization of a novel high-oil-absorbing resin. Journal of Applied Polymer Science 2010, 115 (6), 3321-3325.
74.Li, J.; Wang, F.; Liu, C.-y., Tri-isocyanate reinforced graphene aerogel and its use for crude oil adsorption. Journal of Colloid and Interface Science 2012, 382 (1), 13-16.
75.Sokker, H. H.; El-Sawy, N. M.; Hassan, M. A.; El-Anadouli, B. E., Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials 2011, 190 (1–3), 359-365.
76.Liao, C. Y.; Chiou, J. Y.; Lin, J. J., Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Advances 2015, 5 (122), 100702-100708.
77.Kumar, A.; Shukla, S. K., A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application. Energy Procedia 2015, 74, 462-469.
78.Akgün, M.; Aydın, O.; Kaygusuz, K., Thermal energy storage performance of paraffin in a novel tube-in-shell system. Applied Thermal Engineering 2008, 28 (5–6), 405-413.
79.Alkan, C., Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochimica Acta 2006, 451 (1–2), 126-130.
80.Zalba, B.; Marı́n, J. M.; Cabeza, L. F.; Mehling, H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003, 23 (3), 251-283.
81.Cai, Y. B.; Ke, H. Z.; Dong, J.; Wei, Q. F.; Lin, J. L.; Zhao, Y.; Song, L.; Hu, Y. A.; Huang, F. L.; Gao, W. D.; Fong, H., Effects of nano-SiO(2) on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy 2011, 88 (6), 2106-2112.
82.Aydın, A. A.; Aydın, A., High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. Solar Energy Materials and Solar Cells 2012, 96, 93-100.
83.Şentürk, S. B.; Kahraman, D.; Alkan, C.; Gökçe, İ., Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers 2011, 84 (1), 141-144.
84.Fernandes, D.; Pitié, F.; Cáceres, G.; Baeyens, J., Thermal energy storage: “How previous findings determine current research priorities”. Energy 2012, 39 (1), 246-257.
85.Sandnes, B.; Rekstad, J., Supercooling salt hydrates: Stored enthalpy as a function of temperature. Solar Energy 2006, 80 (5), 616-625.
86.Wang, L.; Meng, D., Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Applied Energy 2010, 87 (8), 2660-2665.
87.Pielichowska, K.; Głowinkowski, S.; Lekki, J.; Biniaś, D.; Pielichowski, K.; Jenczyk, J., PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. European Polymer Journal 2008, 44 (10), 3344-3360.
88.Inaba, H.; Tu, P., Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat and Mass Transfer 1997, 32 (4), 307-312.
89.Lee, C. H.; Choi, H. K., Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage. Polymer Composites 1998, 19 (6), 704-708.
90.Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W.; Fong, H., Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy 2011, 88 (6), 2106-2112.
91.Lin, J.-J.; Chan, Y.-N.; Chang, W.-H., Amphiphilic Poly(Oxyalkylene)-Amines Interacting with Layered Clays: Intercalation, Exfoliation, and New Applications. In Advanced Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA: 2010, pp 459-480.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊