|
1.Theng, B. K. G., The Chemistry of Clay-organic Reactions. Wiley: 1974. 2.Theng, B. K. G., Formation and Properties of Clay-polymer Complexes. Elsevier: 2012. 3.Lai, Y.-H.; Chiu, C.-W.; Chen, J.-G.; Wang, C.-C.; Lin, J.-J.; Lin, K.-F.; Ho, K.-C., Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar Energy Materials and Solar Cells 2009, 93 (10), 1860-1864. 4.Tateyama, H.; Nishimura, S.; Tsunematsu, K.; Jinnai, K.; Adachi, Y.; Kimura, M., Synthesis of expandable fluorine mica from talc. Clays and Clay Minerals 1992, 40 (2), 180-185. 5.Kodama, T.; Higuchi, T.; Shimizu, T.; Shimizu, K.-i.; Komarneni, S.; Hoffbauer, W.; Schneider, H., Synthesis of Na-2-mica from metakaolin and its cation exchange properties. Journal of Materials Chemistry 2001, 11 (8), 2072-2077. 6.Chiu, C.-W.; Chu, C.-C.; Dai, S. A.; Lin, J.-J., Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets. The Journal of Physical Chemistry C 2008, 112 (46), 17940-17944. 7.Rives, V.; Angeles Ulibarri, M. a., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews 1999, 181 (1), 61-120. 8.Rives, V., Characterisation of layered double hydroxides and their decomposition products. Materials Chemistry and Physics 2002, 75 (1–3), 19-25. 9.Khan, A. I.; O''Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry 2002, 12 (11), 3191-3198. 10.LASZLO, P., Chemical Reactions on Clays. Science 1987, 235 (4795), 1473-1477. 11.Cseri, T.; Békássy, S.; Figueras, F.; Rizner, S., Benzylation of aromatics on ion-exchanged clays. Journal of Molecular Catalysis A: Chemical 1995, 98 (2), 101-107. 12.Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H., Cation-exchanged montmorillonite catalyzed hydration of styrene derivatives. Journal of Molecular Catalysis A: Chemical 1997, 126 (1), 55-60. 13.Pinnavaia, T. J., Intercalated Clay Catalysts. Science 1983, 220 (4595), 365-371. 14.Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, T. L. M.; Buglass, J. G., Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396 (6709), 353-356. 15.Celis, R.; Hermosín, M. C.; Carrizosa, M. J.; Cornejo, J., Inorganic and Organic Clays as Carriers for Controlled Release of the Herbicide Hexazinone. Journal of Agricultural and Food Chemistry 2002, 50 (8), 2324-2330. 16.Rawajfih, Z.; Nsour, N., Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science 2006, 298 (1), 39-49. 17.Király, Z.; Veisz, B.; Mastalir, Á.; Köfaragó, G., Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants: Catalytic Probes in Hydrogenations. Langmuir 2001, 17 (17), 5381-5387. 18.Giannelis, E. P., Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Applied Organometallic Chemistry 1998, 12 (10-11), 675-680. 19.Chiu, C.-W.; Lin, J.-J., Self-assembly behavior of polymer-assisted clays. Progress in Polymer Science 2012, 37 (3), 406-444. 20.Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485. 21.Jiang-Jen, L. I. N.; Jein, C. I.; Chien-Chia, C. H. U., High Compatibility of the Poly(oxypropylene)amine-Intercalated Montmorillonite for Epoxy. Polymer Journal 2003, 35 (5), 411-416. 22.Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P., Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates. Chemistry of Materials 1994, 6 (7), 1017-1022. 23.Ganguly, S.; Dana, K.; Mukhopadhyay, T. K.; Ghatak, S., SIMULTANEOUS INTERCALATION OF TWO QUATERNARY PHOSPHONIUM SALTS INTO MONTMORILLONITE. Clays and Clay Minerals 2011, 59 (1), 13-20. 24.Wu, T.; Xie, A. G.; Tan, S.-Z.; Cai, X., Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids and Surfaces B: Biointerfaces 2011, 86 (1), 232-236. 25.Bottino, F. A.; Fabbri, E.; Fragalà, I. L.; Malandrino, G.; Orestano, A.; Pilati, F.; Pollicino, A., Polystyrene-Clay Nanocomposites Prepared with Polymerizable Imidazolium Surfactants. Macromolecular Rapid Communications 2003, 24 (18), 1079-1084. 26.Fox, D. M.; Maupin, P. H.; Harris, R. H.; Gilman, J. W.; Eldred, D. V.; Katsoulis, D.; Trulove, P. C.; De Long, H. C., Use of a Polyhedral Oligomeric Silsesquioxane (POSS)-Imidazolium Cation as an Organic Modifier for Montmorillonite. Langmuir 2007, 23 (14), 7707-7714. 27.Wang, Z. M.; Chung, T. C.; Gilman, J. W.; Manias, E., Melt-processable syndiotactic polystyrene/montmorillonite nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (24), 3173-3187. 28.Gilman, J. W.; Awad, W. H.; Davis, R. D.; Shields, J.; Harris, R. H.; Davis, C.; Morgan, A. B.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; DeLong, H. C., Polymer/Layered Silicate Nanocomposites from Thermally Stable Trialkylimidazolium-Treated Montmorillonite. Chemistry of Materials 2002, 14 (9), 3776-3785. 29.Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O., Swelling behavior of montmorillonite cation exchanged for ω-amino acids by -caprolactam. Journal of Materials Research 1993, 8 (05), 1174-1178. 30.Franco, R.; Brasil, C.; Mantovani, G.; Azevedo, E.; Bonagamba, T., Molecular Dynamics of Poly(Ethylene Glycol) Intercalated in Clay, Studied Using 13C Solid-State NMR. Materials 2013, 6 (1), 47. 31.Ratnayake, U. N.; Prematunga, D. E.; Peiris, C.; Karunaratne, V.; Amaratunga, G. A., Effect of polyethylene glycol-intercalated organoclay on vulcanization characteristics and reinforcement of natural rubber nanocomposites. Journal of Elastomers and Plastics 2015. 32.Chou, C.-C.; Shieu, F.-S.; Lin, J.-J., Preparation, Organophilicity, and Self-Assembly of Poly(oxypropylene)amine−Clay Hybrids. Macromolecules 2003, 36 (7), 2187-2189. 33.Lin, J.-J.; Chen, I. J.; Chou, C.-C., Critical Conformational Change of Poly(oxypropylene)diamines in Layered Aluminosilicate Confinement. Macromolecular Rapid Communications 2003, 24 (8), 492-495. 34.Chiou, J.-Y.; Hsu, R.-S.; Chiu, C.-W.; Lin, J.-J., A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Advances 2013, 3 (31), 12847-12854. 35.Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O., Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (4), 983-986. 36.Fu, X.; Qutubuddin, S., Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 2001, 42 (2), 807-813. 37.Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. C., Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chemistry of Materials 2001, 13 (10), 3516-3523. 38.Gopakumar, T. G.; Lee, J. A.; Kontopoulou, M.; Parent, J. S., Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 2002, 43 (20), 5483-5491. 39.Fu, X.; Qutubuddin, S., Synthesis of polystyrene–clay nanocomposites. Materials Letters 2000, 42 (1–2), 12-15. 40.Chou, C.-C.; Lin, J.-J., One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005, 38 (2), 230-233. 41.Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38 (15), 6240-6243. 42.Lin, J.-J.; Chu, C.-C.; Chiang, M.-L.; Tsai, W.-C., First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. The Journal of Physical Chemistry B 2006, 110 (37), 18115-18120. 43.Chiu, C.-W.; Chu, C.-C.; Cheng, W.-T.; Lin, J.-J., Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. European Polymer Journal 2008, 44 (3), 628-636. 44.Giannelis, E. P., Polymer Layered Silicate Nanocomposites. Advanced Materials 1996, 8 (1), 29-35. 45.Lan, T.; Pinnavaia, T. J., Clay-Reinforced Epoxy Nanocomposites. Chemistry of Materials 1994, 6 (12), 2216-2219. 46.Messersmith, P. B.; Giannelis, E. P., Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites. Chemistry of Materials 1994, 6 (10), 1719-1725. 47.Wang, M. S.; Pinnavaia, T. J., Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin. Chemistry of Materials 1994, 6 (4), 468-474. 48.Yang, C.; Kaipa, U.; Mather, Q. Z.; Wang, X.; Nesterov, V.; Venero, A. F.; Omary, M. A., Fluorous Metal–Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage. Journal of the American Chemical Society 2011, 133 (45), 18094-18097. 49.Schaum, J.; Cohen, M.; Perry, S.; Artz, R.; Draxler, R.; Frithsen, J. B.; Heist, D.; Lorber, M.; Phillips, L., Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill. Environmental Science & Technology 2010, 44 (24), 9383-9389. 50.Nonomura, Y.; Kobayashi, N., Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles. Journal of Colloid and Interface Science 2009, 330 (2), 463-466. 51.Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A., Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano 2012, 6 (6), 5413-5419. 52.Wu, L.; Li, L.; Li, B.; Zhang, J.; Wang, A., Magnetic, Durable, and Superhydrophobic Polyurethane@Fe3O4@SiO2@Fluoropolymer Sponges for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Interfaces 2015, 7 (8), 4936-4946. 53.Zhou, X.; Zhang, Z.; Xu, X.; Men, X.; Zhu, X., Facile Fabrication of Superhydrophobic Sponge with Selective Absorption and Collection of Oil from Water. Industrial & Engineering Chemistry Research 2013, 52 (27), 9411-9416. 54.Broje, V.; Keller, A. A., Effect of operational parameters on the recovery rate of an oleophilic drum skimmer. Journal of Hazardous Materials 2007, 148 (1–2), 136-143. 55.Feng, J.; Hu, X.; Yue, P. L., Novel Bentonite Clay-Based Fe−Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II. Environmental Science & Technology 2003, 38 (1), 269-275. 56.Lin, J.-J.; Chan, Y.-N.; Lan, Y.-F., Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. Materials 2010, 3 (4), 2588-2605. 57.Kumar, A. P.; Depan, D.; Singh Tomer, N.; Singh, R. P., Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Progress in Polymer Science 2009, 34 (6), 479-515. 58.Newman, A. C. D., Chemistry of clays and clay minerals. Wiley: 1987. 59.Hsu, R.-S.; Chang, W.-H.; Lin, J.-J., Nanohybrids of Magnetic Iron-Oxide Particles in Hydrophobic Organoclays for Oil Recovery. ACS Applied Materials & Interfaces 2010, 2 (5), 1349-1354. 60.Teas, C.; Kalligeros, S.; Zanikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G., Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 2001, 140 (3), 259-264. 61.Wang, J.; Wang, Q.; Zheng, Y.; Wang, A., Synthesis and oil absorption of poly(butylmethacrylate)/organo-attapulgite nanocomposite by suspended emulsion polymerization. Polymer Composites 2013, 34 (2), 274-281. 62.Sayyad Amin, J.; Vared Abkenar, M.; Zendehboudi, S., Natural Sorbent for Oil Spill Cleanup from Water Surface: Environmental Implication. Industrial & Engineering Chemistry Research 2015, 54 (43), 10615-10621. 63.Mullin, J. V.; Champ, M. A., Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin 2003, 8 (4), 323-330. 64.Bellino, P. W.; Rangwala, A. S.; Flynn, M. R., A study of in situ burning of crude oil in an ice channel. Proceedings of the Combustion Institute 2013, 34 (2), 2539-2546. 65.Das, G.; Kalita, R. D.; Deka, H.; Buragohain, A. K.; Karak, N., Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites. Progress in Organic Coatings 2013, 76 (7–8), 1103-1111. 66.Ugochukwu, U. C.; Jones, M. D.; Head, I. M.; Manning, D. A. C.; Fialips, C. I., Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. International Biodeterioration & Biodegradation 2014, 88, 185-191. 67.Ugochukwu, U. C.; Manning, D. A. C.; Fialips, C. I., Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds. Journal of Environmental Management 2014, 142, 30-35. 68.Okiel, K.; El-Sayed, M.; El-Kady, M. Y., Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum 2011, 20 (2), 9-15. 69.Arbatan, T.; Fang, X.; Shen, W., Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chemical Engineering Journal 2011, 166 (2), 787-791. 70.Xue, Z.; Sun, Z.; Cao, Y.; Chen, Y.; Tao, L.; Li, K.; Feng, L.; Fu, Q.; Wei, Y., Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil-water separation. RSC Advances 2013, 3 (45), 23432-23437. 71.Choi, S.-J.; Kwon, T.-H.; Im, H.; Moon, D.-I.; Baek, D. J.; Seol, M.-L.; Duarte, J. P.; Choi, Y.-K., A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Applied Materials & Interfaces 2011, 3 (12), 4552-4556. 72.Wang, S.; Li, M.; Lu, Q., Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. ACS Applied Materials & Interfaces 2010, 2 (3), 677-683. 73.Zhou, X.-M.; Chuai, C.-Z., Synthesis and characterization of a novel high-oil-absorbing resin. Journal of Applied Polymer Science 2010, 115 (6), 3321-3325. 74.Li, J.; Wang, F.; Liu, C.-y., Tri-isocyanate reinforced graphene aerogel and its use for crude oil adsorption. Journal of Colloid and Interface Science 2012, 382 (1), 13-16. 75.Sokker, H. H.; El-Sawy, N. M.; Hassan, M. A.; El-Anadouli, B. E., Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials 2011, 190 (1–3), 359-365. 76.Liao, C. Y.; Chiou, J. Y.; Lin, J. J., Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Advances 2015, 5 (122), 100702-100708. 77.Kumar, A.; Shukla, S. K., A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application. Energy Procedia 2015, 74, 462-469. 78.Akgün, M.; Aydın, O.; Kaygusuz, K., Thermal energy storage performance of paraffin in a novel tube-in-shell system. Applied Thermal Engineering 2008, 28 (5–6), 405-413. 79.Alkan, C., Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochimica Acta 2006, 451 (1–2), 126-130. 80.Zalba, B.; Marı́n, J. M.; Cabeza, L. F.; Mehling, H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003, 23 (3), 251-283. 81.Cai, Y. B.; Ke, H. Z.; Dong, J.; Wei, Q. F.; Lin, J. L.; Zhao, Y.; Song, L.; Hu, Y. A.; Huang, F. L.; Gao, W. D.; Fong, H., Effects of nano-SiO(2) on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy 2011, 88 (6), 2106-2112. 82.Aydın, A. A.; Aydın, A., High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. Solar Energy Materials and Solar Cells 2012, 96, 93-100. 83.Şentürk, S. B.; Kahraman, D.; Alkan, C.; Gökçe, İ., Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers 2011, 84 (1), 141-144. 84.Fernandes, D.; Pitié, F.; Cáceres, G.; Baeyens, J., Thermal energy storage: “How previous findings determine current research priorities”. Energy 2012, 39 (1), 246-257. 85.Sandnes, B.; Rekstad, J., Supercooling salt hydrates: Stored enthalpy as a function of temperature. Solar Energy 2006, 80 (5), 616-625. 86.Wang, L.; Meng, D., Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Applied Energy 2010, 87 (8), 2660-2665. 87.Pielichowska, K.; Głowinkowski, S.; Lekki, J.; Biniaś, D.; Pielichowski, K.; Jenczyk, J., PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. European Polymer Journal 2008, 44 (10), 3344-3360. 88.Inaba, H.; Tu, P., Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat and Mass Transfer 1997, 32 (4), 307-312. 89.Lee, C. H.; Choi, H. K., Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage. Polymer Composites 1998, 19 (6), 704-708. 90.Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W.; Fong, H., Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy 2011, 88 (6), 2106-2112. 91.Lin, J.-J.; Chan, Y.-N.; Chang, W.-H., Amphiphilic Poly(Oxyalkylene)-Amines Interacting with Layered Clays: Intercalation, Exfoliation, and New Applications. In Advanced Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA: 2010, pp 459-480.
|