跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪堃哲
研究生(外文):Kun-Che Hung
論文名稱:水性3D列印墨水之開發與軟骨組織工程之應用研究
論文名稱(外文):Development of water-based 3D printing inks for cartilage tissue engineering applications
指導教授:徐善慧徐善慧引用關係
指導教授(外文):Shan-hui Hsu
口試委員:賴森茂孫一明張振榮張瑞芝戴念國
口試委員(外文):Sun-Mou LaiYi-Ming SunChen-Jung ChangJui-Chih ChangLien-Guo Dai
口試日期:2016-07-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:161
中文關鍵詞:水性生物可降解聚胺酯三維列印表面化學三維支架組織工程碎形維度
外文關鍵詞:waterborne biodegradable polyurethane3D printingsurface chemistry3D scaffoldtissue engineeringfractal dimension
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討材料物理化學特性對細胞行為之影響,並發展多成份水性三維(three-dimensional, 3D)列印墨水以作為製造可促進組織修復之3D支架用。第一部分為製備一系列不同親水基團比例及薄膜厚度之陰離子型水性生物可降解聚胺酯(polyurethane, PU)以了解高分子於水溶液環境下表面鏈段重整情形對細胞行為的影響。研究中發現聚胺酯硬段中的羧基與胺基會與水溶液中的鈣離子作用,並進入到間葉幹細胞中造成細胞快速移動與形成自組裝團聚,研究中也發現此細胞團聚的形成與否和團聚大小分別與NF-kB 路徑和Hippo 路徑相關,此聚胺酯薄膜上所形成的細胞團聚相較於貼附的細胞具有較高的幹性基因(Oct4、Nanog和Sox2)表現和多分化能力。本部分顯示高分子於細胞培養環境中的鏈段重整及表面官能基螯合鈣質的能力將可促進間葉幹細胞自我團聚的形成,並提升幹細胞的分化能力,此有助於設計出合適的材料化學結構以影響幹細胞行為並促進組織修復。第二部分為利用水性3D列印方式並輔以聚氧乙烯作為增黏劑,將水性生物可降解聚胺酯進行組織工程支架成形,此製程相較於其他的3D列印方式無需使用有毒有機溶劑、交聯劑及光起始劑。所形成後的水性3D列印聚胺酯支架具有良好的彈性及細胞相容性,並發現軟骨細胞於支架中可形成細胞團聚,此可促進軟骨細胞增生及分泌細胞外基質,透過此部分研究我們發展出水性3D列印製程與彈性3D支架,並證實此支架適用於軟骨組織工程中。第三部分中我們利用水性3D列印技術發展出了可促幹細胞自動軟骨化的支架,當中利用水性生物可降解聚胺酯、玻尿酸(hyaluronan, HA)與生長因子TGFB3或小分子藥物Y27632進行列印。當幹細胞種植於水性三成份支架中可形成細胞團聚,而釋放出的TGFB3或Y27632可促進其軟骨分化,且研究也發現相較於使用TGFB3,若使用Y27632可避免MSC往肥大化軟骨分化,經由兔子關節軟骨實驗也證實此含Y27632支架具有良好的修復效果,本部分證實所發展之三成份水性3D列印墨水所形成的3D列印支架於客製化軟骨組織工程上具有極高的應用性。本論文第四部份為探討材料碎形維度對細胞行為的影響。由研究中可發現較高碎形維度的水凝膠中纖維母細胞與間葉幹細胞皆有較高的增生速率,而幹細胞分化方面當細胞分別培養於碎形維度≥ 1.8、≥ 1.6或 ≤ 1.4的水凝膠中時可分別促進幹細胞的軟骨分化、硬骨分化與神經分化,此顯示當幹細胞培養於具有和目標組織相同之碎形維度的水凝膠中時可促進其往目標組織分化,此部分有助於未來促進幹細胞分化之3D列印水凝膠墨水的設計。透過本論文之四個部分探討材料物化性質對細胞行為的影響及水性3D列印的可行性,期望幫助未來可設計出更合適的材料化學結構和物理構型,並搭配水性3D列印與多成份列印墨水配方的優點,達到更優異的組織修復效果。

This study investigated the effect physo-chemical properties of materials on cell behavior and developed the water-based multi-component three-dimensional (3D) printing inks for use in tissue engineering. In the fist section, a series of biodegradable anionic polyurethane (PU) was synthesized with different extents of surface functional group rearrangement in response to aqueous environment. The recruitment of carboxyl and amino groups from the bulk material to the surface can interact with calcium ion. The surface-bound calcium was observed to enter mesenchymal stem cells (MSCs), which prompted MSC migration and assembly. The MSC aggregate formation was associated with the NF-kB pathway while the aggregate size was connected to the Hippo pathway. The MSC aggregates had greater expressions of Oct4, Nanog, and Sox2 as well as multi-differentiation capacities than attached MSCs. This part of study suggested that the critical importance of surface functional group and its calcium binding capacity on the self-assembly of MSCs, which may help define and design the appropriate MSC-substrate interaction for tissue engineering applications. In the second section, scaffolds were fabricated from the biodegradable PU dispersion by water-based 3D printing using polyethylene oxide as a viscosity enhancer. Not any toxic organic solvent, crosslinker, or initiator was used. The green process generated a highly elastic scaffold with good affinity to cells. In the 3D-printed PU scaffolds, cells tended to aggregate in clusters. Chondrocytes in 3D-printed PU scaffolds have excellent proliferation and matrix production. In this part of study, we developed a green water-based 3D printing platform to fabricate biodegradable/elastic scaffolds for cartilage tissue engineering applications. In the third section, we developed a 3D-printed scaffold to promote the spontaneous chondrogenesis of MSCs. The scaffolds were printed from the water-based ink containing PU, hyaluronan (HA), and Y27632 (or TGFB3). MSCs seeded in the scaffolds were self-assembled into MSC aggregates and underwent chondrogenesis effectively. The use of Y27632 could prevent the expression of hypertrophic marker. Transplantation of the MSC-seeded PU/HA/Y scaffold in rabbit chondral defects significantly improved the cartilage regeneration. This part of study suggested that the water-based 3D printed PU/HA/Y scaffolds may have potential applications in customized cartilage tissue engineering. In the fourth section, we evaluated the effect of fractal dimension (Df) of hydrogels on cell proliferation and stem cell differentiation. Fibroblasts and mesenchymal stem cells grow faster in hydrogels with a higher Df. Hydrogels with the Df matched to that of a specific tissue favor the tissue-specific differentiation. Chondrogenesis, osteogenesis, and neurogenesis are each preferred in hydrogels with Df ≥ 1.8, ≥ 1.6, and ≤ 1.4, respectively. This part of study suggested that the fractal structure of gel can modulate cell proliferation and fate, which supply a new design rationale to design the appropriate fractal and molecular structure of hydrogels for applications of 3D printing.

口試論文審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目錄 VIII
圖目錄 XI
表目錄 XV
第一章 緒論 1
1. 研究背景與動機 1
2. 文獻回顧 5
第二章 7
高分子表面於水相中與鈣質間作用力對幹細胞自組裝之影響 7
1. 前言 8
2. 材料方法 10
2.1. 合成水性生物可降解聚胺酯 10
2.2. 動態光散射(dynamic light scattering, DLS)分析 12
2.3. 水性生物可降解聚胺酯薄膜製備 12
2.4. 薄膜表面性質分析 13
2.4.1. 水接觸角量測 13
2.4.2 薄膜界面電位分析 13
2.4.3. 薄膜表面機械性質分析 13
2.4.4. 薄膜表面蛋白質吸附實驗 14
2.4.5. 以衰減全反射傅立葉紅外光譜儀(attenuated total reflection-Fourier transform infrared spectroscopy, ATR-IR)進行薄膜表面化學分析 14
2.4.6. 以X-ray電子能譜儀(X-ray photoelectron spectroscopy, XPS)進行薄膜表面化學分析 14
2.4.7. 聚胺酯薄膜表面鈣質吸附量分析 15
2.5. 細胞培養於聚胺酯薄膜上型態分析 15
2.6. 細胞內鈣質濃度分析 16
2.7. 即時定量反轉錄聚合酶連鎖反應(real-time reverse transcription polymerase chain reaction, real-time RT-PCR)分析 17
2.7.1. RNA抽取 17
2.7.2 反轉錄(reverse transcription)反應 17
2.7.3. 即時定量PCR 18
2.8. 細胞培養於聚胺酯上之基因表現 19
2.9. 體外誘導分化能力 19
2.9.1. 誘導硬骨分化 19
2.9.2. 誘導軟骨分化 20
2.9.3. 誘導脂肪分化 21
2.10. 統計學分析 22
3. 結果討論 23
4. 文獻回顧 30
第三章 50
水性合成及三維列印之生物可降解聚胺酯彈性體於軟骨組織工程之應用 50
1. 前言 51
2. 材料方法 54
2.1. 合成水性生物可降解聚胺酯 54
2.2.水性生物可降解聚胺酯分散液性質分析 56
2.3. 水性列印聚胺酯支架 57
2.4. 流變性質測試 58
2.5. 3D列印支架性質測試 59
2.5.1. 3D列印支架表面型態分析 59
2.5.2. 3D列印支架機械性質測試 59
2.5.3. 3D列印支架體外降解性質測試 59
2.6. 細胞培養 60
2.6.1. 軟骨細胞株培養 60
2.6.2. 軟骨細胞於3D列印支架中型態分析 60
2.6.3. 軟骨細胞於3D列印支架中增生及胞外基質分泌情形評估 61
2.7. 統計學分析 62
3. 結果討論 63
4. 文獻回顧 69
第四章 85
具可控釋放功能之水性三維列印聚胺酯彈性體於軟骨組織工程之應用 85
1. 前言 86
2. 材料方法 89
2.1. 合成水性生物可降解聚胺酯 89
2.2. 3D列印支架 89
2.3. 3D列印支架性質測試 91
2.3.1. 3D列印支架表面型態分析 91
2.3.2. 3D列印支架機械性質測試 91
2.3.3. 3D列印支架體外降解性質測試 91
2.3.4. 3D支架之控制釋放能力分析 92
2.4. 細胞培養 92
2.4.1. 人類胎盤間葉幹細胞分離與培養 92
2.4.2. 幹細胞細胞於3D列印支架中型態分析 92
2.4.3. 幹細胞於3D列印支架中軟骨分化情形評估 93
2.5. 關節軟骨修復實驗 96
2.6. 組織學評估 97
2.7. 統計學分析 98
3. 結果討論 99
4. 文獻回顧 105
第五章 121
水凝膠碎形維度對幹細胞行為之影響 121
1. 前言 122
2. 材料方法 125
2.1. 材料與溶液製備 125
2.2. 流變性質測試 126
2.3. 小角度X光散射儀分析 127
2.4. 細胞於不同Df值水膠中增生情形評估 127
2.5. 即時定量反轉錄聚合酶連鎖反應(real-time reverse transcription polymerase chain reaction, real-time RT-PCR)分析 128
2.6. 水膠內MSCs的脂肪、硬骨、軟骨、與神經分化誘導與分析 130
2.6.1. 脂肪分化誘導與分析 130
2.6.2. 硬骨分化誘導與分析 131
2.6.3. 軟骨分化誘導與分析 132
2.6.4. 神經分化誘導與分析 133
2.7. 統計學分析 134
3. 結果討論 135
4. 文獻回顧 141
第六章 總結論 157
第七章 附件:得獎與著作 159

第一章
[1]O''Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011;14:88-95.
[2]Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40:363-408.
[3]Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 2015;11:21-34.
[4]Kim MS, Kim JH, Min BH, Jae HC, Han DK, Lee HB. Polymeric scaffolds for regenerative medicine. Polym. Rev. 2011;51:23-52.
[5]Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012;125:3015-3024.
[6]Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655-663.
[7]Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011;32:6929-6245.
[8]Huang GS, Hsieh PS, Tseng CS, Hsu SH. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci., 2014;2:1652-1660.
[9]Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. J. Mater. Sci. Mater. Med. 2008;19:1297-1305.
[10]Huang GS, Tseng CS, Yen BL, Dai LG, Hsieh PS, Hsu SH. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur. Cell Mater. 2013;26:179-194.
[11]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834.
[12]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652.
[13]Engels HW, Pirkl HG, Albers R, Albach RW, Krause J, Hoffmann A, Casselmann H, Dormish J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Ange. Chem. Int. Ed. 2013;52:9422-9441.
[14]Seymour RB, Kauffman GB. Polyurethanes: a class of modern versatile materials. J. Chem. Educ. 1992;69:909-910.
[15]Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. Polym. Phys. 2011;49: 832-864.
[16]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671.
[17]Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26:3961-3971.
[18]More AS, Lebarbé T, Maisonneuve L, Gadenne B, Alfos C, Cramail H. Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur. Polym. J. 2013;49:823-833.
[19]Chang K, Lu C, Lin MR. Treatment of volatile organic compounds from polyurethane and epoxy manufacture by a trickle-bed air biofilter. J. Biosci. Bioeng. 2001;92:126-130.
[20]Lei L, Zhong L, Lin X, Li Y, Xia Z. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem. Eng. J. 2014;253:518-525.
[21]Hou L, Ding Y, Zhang Z, Sun Z, Shan Z. Synergistic effect of anionic and nonionic monomers on the synthesis of high solid content waterborne polyurethane. Colloid. Surf. A-Physicochem. Eng. Asp. 2015;467:46-56.
[22]Yen MS, Tsai PY, Hong PD. The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments. Colloid. Surf. A-Physicochem. Eng. Asp. 2006;279:1-9.
[23]Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SA, Fu WE, Lin JC. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J. Mater. Chem. B 2014;2:5083-5092.

第二章
[1]Li YJ, Ren ZY, Zhao M, Yang HC, Chu B. Multiphase structure of segmented polyurethanes - effects of hard-segment flexibility. Macromolecules 1993;26:612-622.
[2]Chen JH, Ruckenstein E. Solvent-stimulated surface rearrangement of polyurethanes. J. Colloid. Interface Sci. 1990;135:496-507.
[3]Tezuka Y, Ono T, Imai K. Environmentally induced macromolecular rearrangement on the surface of polyurethane-polysiloxane graft copolymers. J. Colloid. Interface Sci. 1990;136:408-414.
[4]Clapham DE. Calcium signaling. Cell 2007;131:1047-1058.
[5]Nakayama S, Kretsinger RH. Evolution of the EF-hand family of proteins. Annu. Rev. Biophys. Biomol. Struct. 1994;23:473-507.
[6]Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta 2014;1843:398-435.
[7]Shen WG, Peng WX, Shao Y, Xu JF, Dai G, Zhang Y, Pan FY, Li CJ. Localization and activity of calmodulin is involved in cell-cell adhesion of tumor cells and endothelial cells in response to hypoxic stress. Cell Biol. Toxicol. 2007;23:323-335.
[8]Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 2007;45:565-576.
[9]Pisareva VP, Tsizin GI, Zolotov YA. Filters for the preconcentration of elements from solutions. J. Anal. Chem. 2004;59:1014-1032.
[10]Chen GN, Chen KN. Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J. Appl. Polym. Sci. 1999;71:903-913.
[11]Yeh HY, Liu BH, Hsu SH. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials 2012;33:8943-8954.
[12]Huang GS, Hsieh PS, Tseng CS, Hsu SH. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2014;2:1652-1660.
[13]Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006;31:603-632.
[14]Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol. 2014;65:298-306.
[15]Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD. Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 2011;4:1399-1416.
[16]Ghosh S, Laha M, Mondal S, Sengupta S, Kaplan DL. In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 2009;30:6530-6540.
[17]Rahman MM, Kim HD. Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). J. Appl. Polym. Sci. 2006;102:5684-5691.
[18]Belman N, Jin KJ, Golan Y, Israelachvili JN, Pesika NS. Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers. Langmuir 2012;28:14609-14617.
[19]Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(caprolactone) and poly(ethylene glycol) as soft segment. Eur. Polym. J. 2007;43:1838-1846.
[20]Huang YL, Tien HW, Ma CCM, Yang SY, Wu SY, Liu HY, Mai Y-W. Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. J. Mater. Chem. 2011;21:18236-18241.
[21]Alexander MR, Whittle JD, Bartonb D, Shortb RD. Plasma polymer chemical gradients for evaluation of surface reactivity: epoxide reaction with carboxylic acid surface groups. J. Mater. Chem. 2004;14:408-412.
[22]Kuddannaya S, Chuah YJ, Lee MH, Menon NV, Kang Y, Zhang Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013;5:9777-9784.
[23]Khandwekar A, Rho CK. Modulation of cellular responses on engineered polyurethane implants. J. Biomed. Mater. Res. A 2012;100:2211-2222.
[24]Yung LY, Colman RW, Cooper SL. The effect of high molecular weight kininogen on neutrophil adhesion to polymer surfaces. Immunopharmacology 1999;43:281-286.
[25]Pergal MV, Nestorov J, Tovilović G, Ostojić S, Gođevac D, Vasiljević-Radović D, Djonlagić J. Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility. J. Biomed. Mater. Res. A 2014;102:3951-3964.
[26]Minton K. Coordinating calcium signaling. Nat. Rev. Mol. Cell. Biol. 2014;15:152.
[27]Davies MJ, Miranda E, Roussel BD, Kaufman RJ, Marciniak SJ, Lomas DA. Neuroserpin polymers activate NF-kappaB by a calcium signaling pathway that is independent of the unfolded protein response. J. Biol. Chem. 2009;284:18202-18209.
[28]Lilienbaum A, Israël A. From calcium to NF-kappa B signaling pathways in neurons. Mol. Cell. Biol. 2003;23:2680-2698.
[29]Casciani V, Marinoni E, Bocking AD, Moscarini M, Di Iorio R, Challis JR. Opposite effect of phorbol ester PMA on PTGS2 and PGDH mRNA expression in human chorion trophoblast cells. Reprod. Sci. 2008;15:40-50.
[30]Casciani V, Premyslova M, Luo D, Marinoni E, Moscarini M, Di Iorio R, Challis JR. Effect of calcium ionophore A23187 on prostaglandin synthase type 2 and 15-hydroxy-prostaglandin dehydrogenase expression in human chorion trophoblast cells. Am. J. Obstet. Gynecol. 2008;199:554.e1-8.
[31]Widera D1, Mikenberg I, Kaus A, Kaltschmidt C, Kaltschmidt B. Nuclear Factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro. Eur. Cells Mater. 2006;11:76-84.
[32]Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012;22:339-346.
[33]Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 2014;13:877-883.
[34]Hao L, Yang H, Du C, Fu X, Zhao N, Xu S, Cui F, Mao C, Wang Y. Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability. J. Mater. Chem. B 2014;2:4794-4801.
[35]Chen WC, Chen YS, Ko CL, Lin Y, Kuo TH, Kuo HN. Interaction of progenitor bone cells with different surface modifications of titanium implant. Mater. Sci. Eng. C 2014;37:305-313.
[36]Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 2008;7:816-823.
[37]Bai T, Sun F, Zhang L, Sinclair A, Liu S, Ella-Menye JR, Zheng Y, Jiang S. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Ed. Engl. 2014;53:12729-12734.
[38]Quintana L, Nieden NIZ, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev 2009;15:29-41.
[39]Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 2007;8:1505-1510.
[40]Doulabi AH, Mequanint K, Mohammadi Hadi. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 2014;7:5327-5355.
[41]Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011;32:8771-8782.
[42]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671.
[43]Kuo YC, Hung SC, Hsu SH. The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloid. Surf. B 2014;122:414-422.
[44]Lin CY, Hsu SH. Fabrication of biodegradable polyurethane microspheres by a facile and green process. J. Biomed. Mater. Res. B Appl. Biomater. 2014;103:878-887.
[45]Tsai MC, Hung KC, Hung SC, Hsu SH, Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloid. Sur. B 2015;125:34-44.
[46]Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin. Drug Deliv. 2008;5:543-566.

第三章
[1]Spaak A. Processing of plastics. Environ. Health Perspect. 1975;11:21-28.
[2]Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A 2008;14:1195-1202.
[3]Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M. Biomedical production of implants by additive electro-chemical and physical processes. Cirp. Ann. Manuf. Techn. 2012;61: 635-655.
[4]Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater. 2005;4:518-524.
[5]Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh. Migr. 2008;2:9-16.
[6]Huang Y, Siewe M, Madihally SV. Effect of spatial architecture on cellular colonization. Biotechnol. Bioeng. 2006;93:64-75.
[7]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834.
[8]Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028-2034.
[9]Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739-4751.
[10]Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013;34:6706-6716.
[11]Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng. Part C 2013;19:417-426.
[12]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652.
[13]Yen HJ, Hsu SH, Tseng CS, Huang JP, Tsai CL. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng Part A. 2009;15:965-975.
[14]Lee H, Kim G. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym. 2011;85:817-823.
[15]Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 2015;27:4035-4040.
[16]Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur. Cell Mater. 2008;16:80-91.
[17]Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762-798.
[18]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671.
[19]Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003;5:1-16.
[20]Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin. Drug Deliv. 2008;5:543-566.
[21]Wang Z, Wan P, Ding M, Yi X, Li J, Fu Q, Tan H. Synthesis and micellization of new biodegradable phosphorylcholine-capped polyurethane. J. Polym. Sci. Part A: Polym. Chem. 2011;49:2033-2042.
[22]Noble KL. Waterborne polyurethanes. Prog. Org. Coat. 1997;32:131-136.
[23]Buruaga L, Sardon H, Irusta L, González A, Fernández-Berridi MJ, Iruin JJ. J. Appl. Polym. Sci., 2010, 115, 1176-1179.
[24]Yang JH, Yoon NS, Park JH, Kim IK, Cheong IW, Deng Y, Oh W, Yeum JH. Electrospinning fabrication and characterization of poly(vinyl alcohol)/waterborne polyurethane nanofiber membranes in aqueous solution. J. Appl. Polym. Sci. 2011;120:2337-2345.
[25]Hsu SH, Huang TB, Cheng SJ, Weng SY, Tsai CL, Tseng CS, Chen DC, Liu TY, Fu KY, Yen BL. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng. Part A. 2011;17:1549-1560.
[26]Hsu SH, Yen HJ, Tseng CS, Cheng CS, Tsai CL. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J. Biomed. Mater. Res. B 2007;80:519-527.
[27]Couch MA, Binding DM. High pressure capillary rheometory of polymeric fluids. Polymer 2000;41:6323-6334.
[28]Fu S, Ni P, Wang B, Chu B, Peng J, Zheng L, Zhao X, Luo F, Wei Y, Qian Z. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene lycol)-poly(ε-caprolactone)/ nano-hydroxyapatite composite scaffold. Biomaterials 2012;33:8363-8371.
[29]Horton WE Jr, Cleveland J, Rapp U, Nemuth G, Bolander M, Doege K, Yamada Y, Hassell JR. An established rat cell line expressing chondrocyte properties. Exp. Cell Res. 1988;178:457-468.
[30]Whu SW, Hung KC, Hsieh KH, Chen CH, Tsai CL, Hsu SH. In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater. Sci. Eng, C 2013;33:2855-2863.
[31]Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 1988;174:168-176.
[32]Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 1996;243:189-191.
[33]Tande BM, Wagner NJ, Mackay ME, Hawker CJ, Jeong M. Viscosimetric, hydrodynamic, and conformational properties of dendrimers and dendrons. Macromolecules 2001;34:8580-8585.
[34]Brewer AK, Striegel AM. Characterizing the size, shape, and compactness of a polydisperse prolate ellipsoidal particle via quadruple-detector hydrodynamic chromatography. Analyst. 2011;136:515-519.
[35]Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SA, Fu WE, Lin JC. Water-based synthesis and processing of novel biodegradable elastomers for medical applications.. Mater. Chem. B 2014;2:5083-5092.
[36]Guo MY, Wyss HM. Micromechanics of Soft Particles. Macromol. Mater. Eng. 2011;296:223-229.
[37]Duan B, Dong C, Yuan X, Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 2004;15:797-811.
[38]Lee SJ, Lee YM, Han CW, Lee HB, Khang G. Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. J. Appl. Polym. Sci. 2004;92:2784-2790.
[39]Chia SL, Gorna K, Gogolewski S, Alini M. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng. 2006;12:1945-1953.
[40]Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B 2007;17:213-227.
[41]Patel A, Gaharwar AK, Iviglia G, Zhang H, Mukundan S, Mihaila SM, Demarchi D, Khademhosseini A. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 2013;34:3970-3983.
[42]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006;7:265-275.
[43]Santerre JP, Labow RS, Duguay DG, Erfle D, Adams GA. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J. Biomed. Mater. Res. 1994;28:1187-1199.
[44]Eglin D, Mortisen D, Alini M. Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs. Soft Matter 2009;5:938-947.
[45]Solorio LD, Vieregge EL, Dhami CD, Alsberg E. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues. Tissue Eng. Part B Rev. 2013;19:209-220.
[46]Wolf F, Candrian C, Wendt D, Farhadi J, Heberer M, Martin I, Barbero A. Cartilage tissue engineering using pre-aggregated human articular chondrocytes. Eur. Cell Mater. 2008;16:92-99.
[47]Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis Biomaterials 2004;25:5735-5742.
[48]Gigout A, Buschmann MD, Jolicoeur M. Chondrocytes cultured in stirred suspension with serum-free medium containing pluronic-68 aggregate and proliferate while maintaining their differentiated phenotype. Tissue Eng. Part A 2009;15:2237-2248.
[49]Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell Mater. 2012;23:387-399.

第四章
[1]Inui A, Iwakura T, Reddi AH. Human stem cells and articular cartilage regeneration. Cells 2012;1:994-1009.
[2]Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32:773-785.
[3]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652.
[4]Huang GS, Tseng CS, Yen BL, Dai LG, Hsieh PS, Hsu SH. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur. Cell Mater. 2013;26:179-194.
[5]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671.
[6]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834.
[7]Sartori S, Chiono V, Tonda-Turo C, Mattu C, Gianluca C. Biomimetic polyurethanes in nano and regenerative medicine J. Mater. Chem. B 2014;2:5128-5144.
[8]Xu W, Wang X, Yan Y, Zhang R. Rapid prototyping of polyurethane for the creation of vascular systems. J. Bioact. Compat. Pol. 2008;23:103-114.
[9]Cui T, Yan Y, Zhang R, Liu L, Xu W, Wang X. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration. Tissue Eng. Part C 2009;15:1-9.
[10]Huang Y, He K, Wang X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater. Sci. Eng. C 2013;33:3220-3209.
[11]Wang X, He K, Zhang W. Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane-cell/hydrogel construct. J. Bioact. Compat. Pol. 2013;28:303-319.
[12]Han LH, Yu S, Wang T, Behn AW, Yang F. Microribbon-Like Elastomers for Fabricating Macroporous and Highly Flexible Scaffolds that Support Cell Proliferation in 3D. Adv. Funct. Mater. 2013;23:346-358.
[13]Suri S, Han LH, Zhang W, Singh A, Chen S, Schmidt CE. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 2011;13:983-993.
[14]Kenne L, Gohil S, Nilsson EM, Karlsson A, Ericsson D, Kenne AH, Nord LI. Modification and cross-linking parameters in hyaluronic acid hydrogels-definitions and analytical methods. Carbohydr. Polym. 2013;91:410-418.
[15]Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S, Narayan R, Löbler M, Sternberg K, Schmitz KP, Haverich A. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 2011;7:967-974.
[16]Reininghaus W, Koestner A, Klimisch HJ. Chronic toxicity and oncogenicity of inhaled methyl acrylate and n-butyl acrylate in Sprague-Dawley rats. Food Chem. Toxicol. 1991;29:329-339.
[17]Kligerman AD, Atwater AL, Bryant MF, Erexson GL, Kwanyuen P, Dearfield KL. Cytogenetic studies of ethyl acrylate using C57BL/6 mice. Mutagenesis 1991;6:137-141.
[18]Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 2010;31:3858-3867.
[19]Zhang L, Su P, Xu C, Yang J, Yu W, Huang D. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 2010;32:1339-1346.
[20]Davidson ENB, Vitters EL, van der Kraan PM, van den Berg WB. Expression of transforming growth factor-β (TGFβ) and the TGFβ signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann. Rheum. Dis. 2006;65:1414-1421.
[21]Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials 2013;6:637-668.
[22]Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015;348:2340.
[23]Chou HC, Huang LT, Yeh TF, Chen CM. Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol. Sin. 2013;34:1310-1316.
[24]Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 2005;280:11626-11634.
[25]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 2004;6:483-495.
[26]Woods A, Wang G, Dupuis H, Shao Z, Beier F. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis. J. Biol. Chem. 2007;282:23500-23508.
[27]Lu Z, Doulabi BZ, Huang C, Bank RA, Helder MN. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape. Tissue Eng. Part A 2010;16:81-90.
[28]Lai A, Frishman WH. Rho-kinase inhibition in the therapy of cardiovascular disease. Cardiol. Rev. 2005;13:285-292.
[29]Kishi T, Hirooka Y, Masumoto A, Ito K, Kimura Y, Inokuchi K, et al. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005;111:2741-2747.
[30]van den Borne MPJ, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr. Cartilage 2007;15:1397-1402.
[31]Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B 2007;17:213-227.
[32]Liu SQ, Tian Q, Hedrick JL, Hui JHP, Rachel PL, Yang YY. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 2010;31:7298-7307.
[33]Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix inter-actions during chondrogenesis and matrix assembly. Birth. Defects Res. C Embryo Today 2003;69:174-196.
[34]Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 2010;31:631-640.
[35]Huang GS, Hsieh PS, Tseng CS, Hsu SH. Substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2014;2:1652-1660.
[36]Hsu SH, Huang GS, Lin SY, Feng F, Ho TT, Liao YC. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng. Part A 2012;18:67-79.
[37]Chang JC, Hsu SH, Chen DC. The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 2009;30:6265-75.
[38]Díaz Lantada A, Pareja Sánchez B, Gómez Murillo C, Urbieta Sotillo J. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev. Med. Devices 2013;10:629-648.

第五章
[1]Muthukumar M. Dynamics of polymeric fractals. J. Chem. Phys. 1985;83:3161-3168.
[2]Bigerelle M, Iost A. A new method to calculate the fractal dimension of surfaces: application to human cell proliferation. Comput. Math. Appl. 2001;42:241-253.
[3]Helmberger M, Pienn M, Urschler M, Kullnig P, Stollberger R, Kovacs G, Olschewski A, Olschewski H, Bálint Z. Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. Plos One 2014;9: e87515.
[4]Mauroy B, Filoche M, Weibel ER, Sapoval B. An optimal bronchial tree may be dangerous. Nature 2004;427:633-636.
[5]Ahmadi K, Ahmadlou M, Rezazade M, Azad-Marzabadi E, Sajedi F. Brain activity of women is more fractal than men. Neurosci. Lett. 2013;535:7-11.
[6]Lantada DA, Sánchez PB, Murillo Gómez C, Sotillo UJ. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev. Med. Devices 2013;10:629-648.
[7]Liao W, Zhang Y, Guan Y, Zhu XX. Fractal structures of the hydrogels formed in situ from poly(N-isopropylacrylamide) microgel dispersions. Langmuir 2012;28:10873-10880.
[8]Saffer EM, Lackey MA, Griffin DM, Kishore S, Tew GN, Bhatia SR. SANS study of highly resilient poly(ethylene glycol) hydrogels. Soft Matter 2014;10:1905-1916.
[9]Hsu SH, Yu TL. Dynamic viscoelasticity study of the phase transition of poly(N-isopropylacrylamide). Macromol. Rapid. Commun. 2000;21:476-480.
[10]Izuka A. Winter HH, Hashimoto T. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 1992;25:2422-2428.
[11]Muthukumar M. Screening effect on viscoelasticity near the gel point. Macromolecules 1989;22:4656-4658.
[12]Ramzi M, Rochas C, Guenet JM. Structure-properties relation for agarose thermoreversible gels in binary solvents. Macromolecules 1998;31:6106-6111.
[13]P Meakin, “Simulations of Aggregation Processes”, in: The Fractal Approach to Heterogeneous Chemistry, D. Avnir Ed., John Wiley & Sons, Chichester, U. K. 1989.
[14]Palin E, Liu HN, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005;16:1828-1835.
[15]Weng S, Fu J. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials. 2011;32:9584-9593.
[16]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-689.
[17]Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 2014;190:254-273.
[18]Bengani LC, Leclerc J, Chauhan A. Lysozyme transport in p-HEMA hydrogel contact lenses. J. Colloid Interface Sci. 2012;386:441-450.
[19]Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655-663.
[20]Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh. Migr. 2008;2:9-16.
[21]Chung HJ, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009;4:429-437.
[22]Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012;41:2193-2221.
[23]Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. Adv. Funct. Mater. 2013;23:575-582.
[24]Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-B. Biomaterials 2011;32:3921-3930.
[25]Haire TJ, Hodgskinson R, Ganney PS, Langton CM. A comparison of porosity, fabric and fractal dimension as predictors of the Young''s modulus of equine cancellous bone. Med. Eng. Phys. 1998;20:588-593.
[26]Horkay F, Basser PJ. Cartilage proteoglycans: structure, assembly and organization. PMSE Prepr. 2011;104:286-287.
[27]Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 2008;7:816-823.
[28]Gentile F, Medda R, Cheng L, Battista E, Scopelliti PE, Milani P, Cavalcanti-Adam EA, Decuzzi P. Selective modulation of cell response on engineered fractal silicon substrates. Sci. Rep. 2013;3:1461. Doi:10.1038/srep01461.
[29]Bigerelle M, Iost A. A new method to calculate the fractal dimension of surfaces: application to human cell proliferation. Comput. Math. Appl. 2011;42:241-253.
[30]Jeng US, Liu WJ, Lin TL, Wang LY, Chiang LY. Fractal structure of polyhydroxylated fullerenes in water solution. Fullerene Sci. Technol. 1999;7:599-608.
[31]Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 2011;25:1813-1827.
[32]Ramji K, Shah RN. Electrospun soy protein nanofiber scaffolds for tissue regeneration. J. Biomater. Appl. 2014;29:411-422.
[33]Li X, Katsanevakis E, Liu X, Zhang N, Wen X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog. Polym. Sci. 2012;37:1105-1129.
[34]Khaing ZZ, Schmidt CE. Advances in natural biomaterials for nerve tissue repair. Neurosci. Lett. 2012;519:103-114.
[35]Guenet, J. M. Polymer − Solvent Molecular Compounds; Elsevier: Amsterdam, 2008; p 70.
[36]Wang LS, Boulaire J, Chan PP, Chung JE, Kurisawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 2010;31:8608-8616.
[37]Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 2011;6:e15978.
[38]Wang LS, Chung JE, Chan PP, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010;31:1148-1157.
[39]Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues J. Cell Sci. 2012;125:3015-3024.
[40]Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009;324:1673-1677.
[41]Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 2010;9:518-526.
[42]Parekh SH, Chatterjee K, Lin-Gibson S, Moore NM, Cicerone MT, Young MF, Simon CG Jr. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials 2011;32:2256-2264.
[43]Horkay, F.; Basser, P. J. ACS Division of Polymeric Materials: Science and Engineering. PMSE Preprints; American Chemical Society: Washington, DC, 2011; Vol. 104, pp 286287.
[44]Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. Universality in colloid aggregation. Nature 1989;339:360-362.
[45]Kim J, Kwon N, Chang S, Kim KT, Lee D, Kim S, Yun SJ, Hwang D, Kim JW, Hwu Y, Margaritondo G, Je JH, Rhyu IJ. Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Sci. Rep. 2011;1:122-128.
[46]Smith TG Jr, Marks WB, Lange GD, Sheriff WH Jr, Neale EA. A fractal analysis of cell images. J. Neurosci. Methods 1989;27:173-180.
[47]Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr. Cartilage 2006;14:179-189.
[48]Tang D, Marangoni AG. 3D fractal dimension of fat crystal networks. Chem. Phys. Lett. 2006;433:248-252.
[49]Sarkar R, Guo K, Moorefield CN, Saunders MJ, Wesdemiotis C, Newkome GR. One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew. Chem. Int. Ed Engl. 2014;53:12182-12185.
[50]Agrawal SK, Sanabria-Delong N, Jemian PR, Tew GN, Bhatia SR. Micro- to nanoscale structure of biocompatible PLA-PEO-PLA hydrogels. Langmuir 2007;23:5039-5044.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊