|
第一章 [1]O''Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011;14:88-95. [2]Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40:363-408. [3]Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 2015;11:21-34. [4]Kim MS, Kim JH, Min BH, Jae HC, Han DK, Lee HB. Polymeric scaffolds for regenerative medicine. Polym. Rev. 2011;51:23-52. [5]Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012;125:3015-3024. [6]Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655-663. [7]Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011;32:6929-6245. [8]Huang GS, Hsieh PS, Tseng CS, Hsu SH. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci., 2014;2:1652-1660. [9]Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. J. Mater. Sci. Mater. Med. 2008;19:1297-1305. [10]Huang GS, Tseng CS, Yen BL, Dai LG, Hsieh PS, Hsu SH. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur. Cell Mater. 2013;26:179-194. [11]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834. [12]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652. [13]Engels HW, Pirkl HG, Albers R, Albach RW, Krause J, Hoffmann A, Casselmann H, Dormish J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Ange. Chem. Int. Ed. 2013;52:9422-9441. [14]Seymour RB, Kauffman GB. Polyurethanes: a class of modern versatile materials. J. Chem. Educ. 1992;69:909-910. [15]Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. Polym. Phys. 2011;49: 832-864. [16]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671. [17]Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26:3961-3971. [18]More AS, Lebarbé T, Maisonneuve L, Gadenne B, Alfos C, Cramail H. Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur. Polym. J. 2013;49:823-833. [19]Chang K, Lu C, Lin MR. Treatment of volatile organic compounds from polyurethane and epoxy manufacture by a trickle-bed air biofilter. J. Biosci. Bioeng. 2001;92:126-130. [20]Lei L, Zhong L, Lin X, Li Y, Xia Z. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem. Eng. J. 2014;253:518-525. [21]Hou L, Ding Y, Zhang Z, Sun Z, Shan Z. Synergistic effect of anionic and nonionic monomers on the synthesis of high solid content waterborne polyurethane. Colloid. Surf. A-Physicochem. Eng. Asp. 2015;467:46-56. [22]Yen MS, Tsai PY, Hong PD. The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments. Colloid. Surf. A-Physicochem. Eng. Asp. 2006;279:1-9. [23]Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SA, Fu WE, Lin JC. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J. Mater. Chem. B 2014;2:5083-5092.
第二章 [1]Li YJ, Ren ZY, Zhao M, Yang HC, Chu B. Multiphase structure of segmented polyurethanes - effects of hard-segment flexibility. Macromolecules 1993;26:612-622. [2]Chen JH, Ruckenstein E. Solvent-stimulated surface rearrangement of polyurethanes. J. Colloid. Interface Sci. 1990;135:496-507. [3]Tezuka Y, Ono T, Imai K. Environmentally induced macromolecular rearrangement on the surface of polyurethane-polysiloxane graft copolymers. J. Colloid. Interface Sci. 1990;136:408-414. [4]Clapham DE. Calcium signaling. Cell 2007;131:1047-1058. [5]Nakayama S, Kretsinger RH. Evolution of the EF-hand family of proteins. Annu. Rev. Biophys. Biomol. Struct. 1994;23:473-507. [6]Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta 2014;1843:398-435. [7]Shen WG, Peng WX, Shao Y, Xu JF, Dai G, Zhang Y, Pan FY, Li CJ. Localization and activity of calmodulin is involved in cell-cell adhesion of tumor cells and endothelial cells in response to hypoxic stress. Cell Biol. Toxicol. 2007;23:323-335. [8]Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 2007;45:565-576. [9]Pisareva VP, Tsizin GI, Zolotov YA. Filters for the preconcentration of elements from solutions. J. Anal. Chem. 2004;59:1014-1032. [10]Chen GN, Chen KN. Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J. Appl. Polym. Sci. 1999;71:903-913. [11]Yeh HY, Liu BH, Hsu SH. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials 2012;33:8943-8954. [12]Huang GS, Hsieh PS, Tseng CS, Hsu SH. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2014;2:1652-1660. [13]Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006;31:603-632. [14]Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol. 2014;65:298-306. [15]Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD. Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 2011;4:1399-1416. [16]Ghosh S, Laha M, Mondal S, Sengupta S, Kaplan DL. In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 2009;30:6530-6540. [17]Rahman MM, Kim HD. Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). J. Appl. Polym. Sci. 2006;102:5684-5691. [18]Belman N, Jin KJ, Golan Y, Israelachvili JN, Pesika NS. Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers. Langmuir 2012;28:14609-14617. [19]Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(caprolactone) and poly(ethylene glycol) as soft segment. Eur. Polym. J. 2007;43:1838-1846. [20]Huang YL, Tien HW, Ma CCM, Yang SY, Wu SY, Liu HY, Mai Y-W. Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. J. Mater. Chem. 2011;21:18236-18241. [21]Alexander MR, Whittle JD, Bartonb D, Shortb RD. Plasma polymer chemical gradients for evaluation of surface reactivity: epoxide reaction with carboxylic acid surface groups. J. Mater. Chem. 2004;14:408-412. [22]Kuddannaya S, Chuah YJ, Lee MH, Menon NV, Kang Y, Zhang Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013;5:9777-9784. [23]Khandwekar A, Rho CK. Modulation of cellular responses on engineered polyurethane implants. J. Biomed. Mater. Res. A 2012;100:2211-2222. [24]Yung LY, Colman RW, Cooper SL. The effect of high molecular weight kininogen on neutrophil adhesion to polymer surfaces. Immunopharmacology 1999;43:281-286. [25]Pergal MV, Nestorov J, Tovilović G, Ostojić S, Gođevac D, Vasiljević-Radović D, Djonlagić J. Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility. J. Biomed. Mater. Res. A 2014;102:3951-3964. [26]Minton K. Coordinating calcium signaling. Nat. Rev. Mol. Cell. Biol. 2014;15:152. [27]Davies MJ, Miranda E, Roussel BD, Kaufman RJ, Marciniak SJ, Lomas DA. Neuroserpin polymers activate NF-kappaB by a calcium signaling pathway that is independent of the unfolded protein response. J. Biol. Chem. 2009;284:18202-18209. [28]Lilienbaum A, Israël A. From calcium to NF-kappa B signaling pathways in neurons. Mol. Cell. Biol. 2003;23:2680-2698. [29]Casciani V, Marinoni E, Bocking AD, Moscarini M, Di Iorio R, Challis JR. Opposite effect of phorbol ester PMA on PTGS2 and PGDH mRNA expression in human chorion trophoblast cells. Reprod. Sci. 2008;15:40-50. [30]Casciani V, Premyslova M, Luo D, Marinoni E, Moscarini M, Di Iorio R, Challis JR. Effect of calcium ionophore A23187 on prostaglandin synthase type 2 and 15-hydroxy-prostaglandin dehydrogenase expression in human chorion trophoblast cells. Am. J. Obstet. Gynecol. 2008;199:554.e1-8. [31]Widera D1, Mikenberg I, Kaus A, Kaltschmidt C, Kaltschmidt B. Nuclear Factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro. Eur. Cells Mater. 2006;11:76-84. [32]Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012;22:339-346. [33]Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 2014;13:877-883. [34]Hao L, Yang H, Du C, Fu X, Zhao N, Xu S, Cui F, Mao C, Wang Y. Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability. J. Mater. Chem. B 2014;2:4794-4801. [35]Chen WC, Chen YS, Ko CL, Lin Y, Kuo TH, Kuo HN. Interaction of progenitor bone cells with different surface modifications of titanium implant. Mater. Sci. Eng. C 2014;37:305-313. [36]Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 2008;7:816-823. [37]Bai T, Sun F, Zhang L, Sinclair A, Liu S, Ella-Menye JR, Zheng Y, Jiang S. Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew. Chem. Int. Ed. Engl. 2014;53:12729-12734. [38]Quintana L, Nieden NIZ, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev 2009;15:29-41. [39]Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 2007;8:1505-1510. [40]Doulabi AH, Mequanint K, Mohammadi Hadi. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 2014;7:5327-5355. [41]Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011;32:8771-8782. [42]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671. [43]Kuo YC, Hung SC, Hsu SH. The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloid. Surf. B 2014;122:414-422. [44]Lin CY, Hsu SH. Fabrication of biodegradable polyurethane microspheres by a facile and green process. J. Biomed. Mater. Res. B Appl. Biomater. 2014;103:878-887. [45]Tsai MC, Hung KC, Hung SC, Hsu SH, Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloid. Sur. B 2015;125:34-44. [46]Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin. Drug Deliv. 2008;5:543-566.
第三章 [1]Spaak A. Processing of plastics. Environ. Health Perspect. 1975;11:21-28. [2]Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A 2008;14:1195-1202. [3]Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M. Biomedical production of implants by additive electro-chemical and physical processes. Cirp. Ann. Manuf. Techn. 2012;61: 635-655. [4]Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater. 2005;4:518-524. [5]Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh. Migr. 2008;2:9-16. [6]Huang Y, Siewe M, Madihally SV. Effect of spatial architecture on cellular colonization. Biotechnol. Bioeng. 2006;93:64-75. [7]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834. [8]Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028-2034. [9]Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739-4751. [10]Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013;34:6706-6716. [11]Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng. Part C 2013;19:417-426. [12]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652. [13]Yen HJ, Hsu SH, Tseng CS, Huang JP, Tsai CL. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng Part A. 2009;15:965-975. [14]Lee H, Kim G. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym. 2011;85:817-823. [15]Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 2015;27:4035-4040. [16]Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur. Cell Mater. 2008;16:80-91. [17]Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762-798. [18]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671. [19]Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003;5:1-16. [20]Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin. Drug Deliv. 2008;5:543-566. [21]Wang Z, Wan P, Ding M, Yi X, Li J, Fu Q, Tan H. Synthesis and micellization of new biodegradable phosphorylcholine-capped polyurethane. J. Polym. Sci. Part A: Polym. Chem. 2011;49:2033-2042. [22]Noble KL. Waterborne polyurethanes. Prog. Org. Coat. 1997;32:131-136. [23]Buruaga L, Sardon H, Irusta L, González A, Fernández-Berridi MJ, Iruin JJ. J. Appl. Polym. Sci., 2010, 115, 1176-1179. [24]Yang JH, Yoon NS, Park JH, Kim IK, Cheong IW, Deng Y, Oh W, Yeum JH. Electrospinning fabrication and characterization of poly(vinyl alcohol)/waterborne polyurethane nanofiber membranes in aqueous solution. J. Appl. Polym. Sci. 2011;120:2337-2345. [25]Hsu SH, Huang TB, Cheng SJ, Weng SY, Tsai CL, Tseng CS, Chen DC, Liu TY, Fu KY, Yen BL. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng. Part A. 2011;17:1549-1560. [26]Hsu SH, Yen HJ, Tseng CS, Cheng CS, Tsai CL. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J. Biomed. Mater. Res. B 2007;80:519-527. [27]Couch MA, Binding DM. High pressure capillary rheometory of polymeric fluids. Polymer 2000;41:6323-6334. [28]Fu S, Ni P, Wang B, Chu B, Peng J, Zheng L, Zhao X, Luo F, Wei Y, Qian Z. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene lycol)-poly(ε-caprolactone)/ nano-hydroxyapatite composite scaffold. Biomaterials 2012;33:8363-8371. [29]Horton WE Jr, Cleveland J, Rapp U, Nemuth G, Bolander M, Doege K, Yamada Y, Hassell JR. An established rat cell line expressing chondrocyte properties. Exp. Cell Res. 1988;178:457-468. [30]Whu SW, Hung KC, Hsieh KH, Chen CH, Tsai CL, Hsu SH. In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater. Sci. Eng, C 2013;33:2855-2863. [31]Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 1988;174:168-176. [32]Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 1996;243:189-191. [33]Tande BM, Wagner NJ, Mackay ME, Hawker CJ, Jeong M. Viscosimetric, hydrodynamic, and conformational properties of dendrimers and dendrons. Macromolecules 2001;34:8580-8585. [34]Brewer AK, Striegel AM. Characterizing the size, shape, and compactness of a polydisperse prolate ellipsoidal particle via quadruple-detector hydrodynamic chromatography. Analyst. 2011;136:515-519. [35]Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SA, Fu WE, Lin JC. Water-based synthesis and processing of novel biodegradable elastomers for medical applications.. Mater. Chem. B 2014;2:5083-5092. [36]Guo MY, Wyss HM. Micromechanics of Soft Particles. Macromol. Mater. Eng. 2011;296:223-229. [37]Duan B, Dong C, Yuan X, Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 2004;15:797-811. [38]Lee SJ, Lee YM, Han CW, Lee HB, Khang G. Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. J. Appl. Polym. Sci. 2004;92:2784-2790. [39]Chia SL, Gorna K, Gogolewski S, Alini M. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng. 2006;12:1945-1953. [40]Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B 2007;17:213-227. [41]Patel A, Gaharwar AK, Iviglia G, Zhang H, Mukundan S, Mihaila SM, Demarchi D, Khademhosseini A. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 2013;34:3970-3983. [42]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006;7:265-275. [43]Santerre JP, Labow RS, Duguay DG, Erfle D, Adams GA. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J. Biomed. Mater. Res. 1994;28:1187-1199. [44]Eglin D, Mortisen D, Alini M. Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs. Soft Matter 2009;5:938-947. [45]Solorio LD, Vieregge EL, Dhami CD, Alsberg E. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues. Tissue Eng. Part B Rev. 2013;19:209-220. [46]Wolf F, Candrian C, Wendt D, Farhadi J, Heberer M, Martin I, Barbero A. Cartilage tissue engineering using pre-aggregated human articular chondrocytes. Eur. Cell Mater. 2008;16:92-99. [47]Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis Biomaterials 2004;25:5735-5742. [48]Gigout A, Buschmann MD, Jolicoeur M. Chondrocytes cultured in stirred suspension with serum-free medium containing pluronic-68 aggregate and proliferate while maintaining their differentiated phenotype. Tissue Eng. Part A 2009;15:2237-2248. [49]Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell Mater. 2012;23:387-399.
第四章 [1]Inui A, Iwakura T, Reddi AH. Human stem cells and articular cartilage regeneration. Cells 2012;1:994-1009. [2]Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32:773-785. [3]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643-652. [4]Huang GS, Tseng CS, Yen BL, Dai LG, Hsieh PS, Hsu SH. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur. Cell Mater. 2013;26:179-194. [5]Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584-671. [6]Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824-3834. [7]Sartori S, Chiono V, Tonda-Turo C, Mattu C, Gianluca C. Biomimetic polyurethanes in nano and regenerative medicine J. Mater. Chem. B 2014;2:5128-5144. [8]Xu W, Wang X, Yan Y, Zhang R. Rapid prototyping of polyurethane for the creation of vascular systems. J. Bioact. Compat. Pol. 2008;23:103-114. [9]Cui T, Yan Y, Zhang R, Liu L, Xu W, Wang X. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration. Tissue Eng. Part C 2009;15:1-9. [10]Huang Y, He K, Wang X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater. Sci. Eng. C 2013;33:3220-3209. [11]Wang X, He K, Zhang W. Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane-cell/hydrogel construct. J. Bioact. Compat. Pol. 2013;28:303-319. [12]Han LH, Yu S, Wang T, Behn AW, Yang F. Microribbon-Like Elastomers for Fabricating Macroporous and Highly Flexible Scaffolds that Support Cell Proliferation in 3D. Adv. Funct. Mater. 2013;23:346-358. [13]Suri S, Han LH, Zhang W, Singh A, Chen S, Schmidt CE. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 2011;13:983-993. [14]Kenne L, Gohil S, Nilsson EM, Karlsson A, Ericsson D, Kenne AH, Nord LI. Modification and cross-linking parameters in hyaluronic acid hydrogels-definitions and analytical methods. Carbohydr. Polym. 2013;91:410-418. [15]Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S, Narayan R, Löbler M, Sternberg K, Schmitz KP, Haverich A. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 2011;7:967-974. [16]Reininghaus W, Koestner A, Klimisch HJ. Chronic toxicity and oncogenicity of inhaled methyl acrylate and n-butyl acrylate in Sprague-Dawley rats. Food Chem. Toxicol. 1991;29:329-339. [17]Kligerman AD, Atwater AL, Bryant MF, Erexson GL, Kwanyuen P, Dearfield KL. Cytogenetic studies of ethyl acrylate using C57BL/6 mice. Mutagenesis 1991;6:137-141. [18]Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 2010;31:3858-3867. [19]Zhang L, Su P, Xu C, Yang J, Yu W, Huang D. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 2010;32:1339-1346. [20]Davidson ENB, Vitters EL, van der Kraan PM, van den Berg WB. Expression of transforming growth factor-β (TGFβ) and the TGFβ signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann. Rheum. Dis. 2006;65:1414-1421. [21]Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials 2013;6:637-668. [22]Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015;348:2340. [23]Chou HC, Huang LT, Yeh TF, Chen CM. Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol. Sin. 2013;34:1310-1316. [24]Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 2005;280:11626-11634. [25]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 2004;6:483-495. [26]Woods A, Wang G, Dupuis H, Shao Z, Beier F. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis. J. Biol. Chem. 2007;282:23500-23508. [27]Lu Z, Doulabi BZ, Huang C, Bank RA, Helder MN. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape. Tissue Eng. Part A 2010;16:81-90. [28]Lai A, Frishman WH. Rho-kinase inhibition in the therapy of cardiovascular disease. Cardiol. Rev. 2005;13:285-292. [29]Kishi T, Hirooka Y, Masumoto A, Ito K, Kimura Y, Inokuchi K, et al. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005;111:2741-2747. [30]van den Borne MPJ, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr. Cartilage 2007;15:1397-1402. [31]Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B 2007;17:213-227. [32]Liu SQ, Tian Q, Hedrick JL, Hui JHP, Rachel PL, Yang YY. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 2010;31:7298-7307. [33]Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix inter-actions during chondrogenesis and matrix assembly. Birth. Defects Res. C Embryo Today 2003;69:174-196. [34]Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 2010;31:631-640. [35]Huang GS, Hsieh PS, Tseng CS, Hsu SH. Substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2014;2:1652-1660. [36]Hsu SH, Huang GS, Lin SY, Feng F, Ho TT, Liao YC. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng. Part A 2012;18:67-79. [37]Chang JC, Hsu SH, Chen DC. The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 2009;30:6265-75. [38]Díaz Lantada A, Pareja Sánchez B, Gómez Murillo C, Urbieta Sotillo J. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev. Med. Devices 2013;10:629-648.
第五章 [1]Muthukumar M. Dynamics of polymeric fractals. J. Chem. Phys. 1985;83:3161-3168. [2]Bigerelle M, Iost A. A new method to calculate the fractal dimension of surfaces: application to human cell proliferation. Comput. Math. Appl. 2001;42:241-253. [3]Helmberger M, Pienn M, Urschler M, Kullnig P, Stollberger R, Kovacs G, Olschewski A, Olschewski H, Bálint Z. Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. Plos One 2014;9: e87515. [4]Mauroy B, Filoche M, Weibel ER, Sapoval B. An optimal bronchial tree may be dangerous. Nature 2004;427:633-636. [5]Ahmadi K, Ahmadlou M, Rezazade M, Azad-Marzabadi E, Sajedi F. Brain activity of women is more fractal than men. Neurosci. Lett. 2013;535:7-11. [6]Lantada DA, Sánchez PB, Murillo Gómez C, Sotillo UJ. Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev. Med. Devices 2013;10:629-648. [7]Liao W, Zhang Y, Guan Y, Zhu XX. Fractal structures of the hydrogels formed in situ from poly(N-isopropylacrylamide) microgel dispersions. Langmuir 2012;28:10873-10880. [8]Saffer EM, Lackey MA, Griffin DM, Kishore S, Tew GN, Bhatia SR. SANS study of highly resilient poly(ethylene glycol) hydrogels. Soft Matter 2014;10:1905-1916. [9]Hsu SH, Yu TL. Dynamic viscoelasticity study of the phase transition of poly(N-isopropylacrylamide). Macromol. Rapid. Commun. 2000;21:476-480. [10]Izuka A. Winter HH, Hashimoto T. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 1992;25:2422-2428. [11]Muthukumar M. Screening effect on viscoelasticity near the gel point. Macromolecules 1989;22:4656-4658. [12]Ramzi M, Rochas C, Guenet JM. Structure-properties relation for agarose thermoreversible gels in binary solvents. Macromolecules 1998;31:6106-6111. [13]P Meakin, “Simulations of Aggregation Processes”, in: The Fractal Approach to Heterogeneous Chemistry, D. Avnir Ed., John Wiley & Sons, Chichester, U. K. 1989. [14]Palin E, Liu HN, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005;16:1828-1835. [15]Weng S, Fu J. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials. 2011;32:9584-9593. [16]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-689. [17]Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 2014;190:254-273. [18]Bengani LC, Leclerc J, Chauhan A. Lysozyme transport in p-HEMA hydrogel contact lenses. J. Colloid Interface Sci. 2012;386:441-450. [19]Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655-663. [20]Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh. Migr. 2008;2:9-16. [21]Chung HJ, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009;4:429-437. [22]Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012;41:2193-2221. [23]Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. Adv. Funct. Mater. 2013;23:575-582. [24]Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-B. Biomaterials 2011;32:3921-3930. [25]Haire TJ, Hodgskinson R, Ganney PS, Langton CM. A comparison of porosity, fabric and fractal dimension as predictors of the Young''s modulus of equine cancellous bone. Med. Eng. Phys. 1998;20:588-593. [26]Horkay F, Basser PJ. Cartilage proteoglycans: structure, assembly and organization. PMSE Prepr. 2011;104:286-287. [27]Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 2008;7:816-823. [28]Gentile F, Medda R, Cheng L, Battista E, Scopelliti PE, Milani P, Cavalcanti-Adam EA, Decuzzi P. Selective modulation of cell response on engineered fractal silicon substrates. Sci. Rep. 2013;3:1461. Doi:10.1038/srep01461. [29]Bigerelle M, Iost A. A new method to calculate the fractal dimension of surfaces: application to human cell proliferation. Comput. Math. Appl. 2011;42:241-253. [30]Jeng US, Liu WJ, Lin TL, Wang LY, Chiang LY. Fractal structure of polyhydroxylated fullerenes in water solution. Fullerene Sci. Technol. 1999;7:599-608. [31]Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 2011;25:1813-1827. [32]Ramji K, Shah RN. Electrospun soy protein nanofiber scaffolds for tissue regeneration. J. Biomater. Appl. 2014;29:411-422. [33]Li X, Katsanevakis E, Liu X, Zhang N, Wen X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog. Polym. Sci. 2012;37:1105-1129. [34]Khaing ZZ, Schmidt CE. Advances in natural biomaterials for nerve tissue repair. Neurosci. Lett. 2012;519:103-114. [35]Guenet, J. M. Polymer − Solvent Molecular Compounds; Elsevier: Amsterdam, 2008; p 70. [36]Wang LS, Boulaire J, Chan PP, Chung JE, Kurisawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 2010;31:8608-8616. [37]Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 2011;6:e15978. [38]Wang LS, Chung JE, Chan PP, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010;31:1148-1157. [39]Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues J. Cell Sci. 2012;125:3015-3024. [40]Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009;324:1673-1677. [41]Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 2010;9:518-526. [42]Parekh SH, Chatterjee K, Lin-Gibson S, Moore NM, Cicerone MT, Young MF, Simon CG Jr. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials 2011;32:2256-2264. [43]Horkay, F.; Basser, P. J. ACS Division of Polymeric Materials: Science and Engineering. PMSE Preprints; American Chemical Society: Washington, DC, 2011; Vol. 104, pp 286287. [44]Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. Universality in colloid aggregation. Nature 1989;339:360-362. [45]Kim J, Kwon N, Chang S, Kim KT, Lee D, Kim S, Yun SJ, Hwang D, Kim JW, Hwu Y, Margaritondo G, Je JH, Rhyu IJ. Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Sci. Rep. 2011;1:122-128. [46]Smith TG Jr, Marks WB, Lange GD, Sheriff WH Jr, Neale EA. A fractal analysis of cell images. J. Neurosci. Methods 1989;27:173-180. [47]Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr. Cartilage 2006;14:179-189. [48]Tang D, Marangoni AG. 3D fractal dimension of fat crystal networks. Chem. Phys. Lett. 2006;433:248-252. [49]Sarkar R, Guo K, Moorefield CN, Saunders MJ, Wesdemiotis C, Newkome GR. One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew. Chem. Int. Ed Engl. 2014;53:12182-12185. [50]Agrawal SK, Sanabria-Delong N, Jemian PR, Tew GN, Bhatia SR. Micro- to nanoscale structure of biocompatible PLA-PEO-PLA hydrogels. Langmuir 2007;23:5039-5044.
|