跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫合毅
研究生(外文):Ho-Yi Sun
論文名稱:功能性聚對二甲苯之物理特性及鍍膜基材選擇性
論文名稱(外文):Physical Properties and Selective Deposition of Functionalized Poly-para-xylylenes
指導教授:戴子安戴子安引用關係陳賢燁
指導教授(外文):Chi-An DaiHsien-Yeh Chen
口試委員:游佳欣趙玲
口試委員(外文):Jiashing YuLing Chao
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:65
中文關鍵詞:化學氣相層積聚對二甲苯鍍膜穩定性導電表面選擇性化學氣相層積表面圖樣表面改質
外文關鍵詞:chemical vapor depositionpoly-para-xylylenecoating stabilityconducting surfaceselective CVDsurface patternsurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由化學氣相層積技術所製備之聚對二甲苯高分子鍍膜,提供了良好的表面特性,創造了生物相容性,也提供選擇性改質的應用。這樣子的鍍膜技術,除了有強韌的附著性之外,更可以應用於各種不同的物質材料以及生醫裝置上。我們也透過相關的生物測試,證實此鍍膜技術在生醫領域上的應用。最後,透過表面能量的改變,讓聚對二甲苯高分子鍍膜具備選擇性表面改質的特性。

在這篇研究中,一開始我們使用了功能性聚對二甲苯高分子作為作為鍍膜,設計具有各種生醫功能的材料。研究的材料除了平面的基材外,也使用了立體結構的骨釘、骨板。這些材料進行了熱穩定測試以及機械強度測試,來證明以聚對二甲苯高分子作為生醫材料鍍膜的穩定特性。更進一步的,透過在鍍膜表面修飾蛋白質分子,給予這些材料良好的生物相容性。這些具有不同尾端的蛋白質分子,在表面造成了不同的特性,可以用來控制蛋白質貼附及細胞的吸附。透過上述的鍍膜技術應用於生醫材料,除了擁有強韌的物理特性及穩定性,更是一個很好的界面,在生物環境中控制不同的生物反應。

在了解優異的表面物理特性後,進一步的,我們透過由下而上 (bottom-up) 的表面圖樣 (patterning) 技術,發揮聚對二甲苯高分子在表面改質精準度上的的優點。然而在過去,這樣的技術受限於基材的選擇。在這篇研究的第二部分,我們研究了一個可以被廣泛運用的技術,讓聚對二甲苯高分子可以選擇性的層積在表面上。在進行化學氣相層積的過程中,透過電場在基材的表面提供高能量,成功的抑制聚對二甲苯高分子在特定位置的層積。這樣子的技術,克服了過去在基材以及官能基上的限制,為聚對二甲苯高分子在由下而上選擇性表面改質上,提供了更廣泛的應用。

Poly-para-xylylene coatings prepared by chemical vapor deposition can tailor surface properties through specific conjugation reactions, create effective biological functions, and provide selective surface modification. The coating technology gives a robust adherent property to a variety of substrate materials, allowing for facile and versatile application, as well as contributing a precise selective surface modification in next-generation implantable devices, cellular assays, tissue engineering, and regenerative medicine applications.
In this present study, we have used functionalized poly-para-xylylene polymers as coatings for the design of biological functions on various substrates. A thermal stability test against elevated temperature was used to test these coatings on selected substrates, and mechanical stability against harsh scratch test was also tested on flat substrates as well as on a bone plate/screw device. Furthermore, biofunctional activities are performed via immobilization of PEG and functional peptides based on specific conjugation using functional sites of the coatings. Tailored surface functions are created using these coatings as a result of their antifouling properties and ability to control cell attachment. The coatings reported herein provide (i) robust coating stability on a wide range of substrate materials that are commonly used in biomedical applications and (ii) designable interfaces to mimic biological environments for controlled biological responses.
After the important interface material of poly-para-xylylenes has been demonstrated to be a robust tool to modify material surfaces to impart precise surface properties, with the bottom-up patterning approach, poly-para-xylylenes coatings provides intrinsic advantages associated with unlimited resolution but is limited by the materials available for selection. A general and simple approach towards the selective deposition of poly-para-xylylenes is introduced in this research. The chemical vapour deposition (CVD) of poly-para-xylylenes is inhibited on the high-energy surfaces of electrically charged conducting substrates. This technology provides an approach to selectively deposit poly-para-xylylenes irrespective of the substituted functionality and to pattern these polymer thin films from the bottom up.

致謝 I
摘要 II
Abstract IV
Content VI
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Biomedical Material Application 1
1.2 Surface Modification Approach 3
1.3 Functionalized Poly-para-xylylenes 4
1.4 Research Motivation and Specific Aims 6
Chapter 2 Materials and Methods 8
2.1 Experimental Instrument and Consumable Materials 8
2.1.1 Experimental Instrument 8
2.1.2 Consumable Materials 8
2.2 Synthesis of poly-para-xylylenes 10
2.2.1 CVD Polymerizations 10
2.2.2 Poly(4-vinyl-p-xylylene-co-p-xylylene): PPX-alkene 12
2.2.3 Poly(4-N-maleimi-domethyl-p-xylylene)-co-(p-xylylene): PPX-maleimide 12
2.2.4 Poly(dichloro-p-xylylene)-co-(p-xylylene): PPX-C 13
2.2.5 Poly(4-formyl-p-xylylene)-co-(p-xylylene): PPX-aldehyde 13
2.2.6 Poly(4-trifluoroacetyl-p-xylylene)-co-(p-xylylene): PPX-TFA 14
2.2.7 Poly(4-aminomethyl-p-xylylene)-co-(p-xylylene): PPX-amine 14
2.3 Surface Characterizations 15
2.3.1 Infrared reflection absorption spectroscopy Characterizations 15
2.3.2 Scanning Electron Microscope 15
2.3.3 Energy Dispersive X-ray Spectroscopy 15
2.3.4 Cross-cut Tape Adhesion Test 16
2.3.5 Bone Plate/Screw Device Adhesion Test 16
2.4 Surface Modifications 17
2.4.1 Bioconjugation Reactions 17
2.4.2 Quartz Crystal Microbalance Analysis 18
2.4.3 Cell Culture and MTT Assays 19
2.4.4 Immobilization 20
2.5 Sticking Coefficient 21
Chapter 3 Physical Properties 23
3.1 Coating Stability 23
3.1.1 CVD Polymerization 23
3.1.2 Adhesion Property 24
3.1.3 IRRAS Characterizations 25
3.1.4 Thermal Stability 26
3.1.5 Adherent Property on Bone Plate/Screw Device 27
3.2 Protein Adsorption 28
3.2.1 Bioconjugation of CREDV Peptide 28
3.2.2 QCM analysis 28
3.3 Cell Viability 31
3.3.1 Immobilization of the CREDV Peptide via Click Reaction 31
3.3.2 MTT Reduction Assay 31
Chapter 4 Selective Deposition 41
4.1 Surface Inhibition 41
4.2 Selective Deposition Thickness 44
4.2.1 Maximum Deposition Thickness with Varying Charging Intensities 44
4.2.2 Maximum Deposition Thickness with Varying Deposition Rates 44
4.3 Patterned Substrates 46
Chapter 5 Conclusions 51
5.1 Conclusions 51
5.2 Future Works 53
Reference 54
Appendix 63
口試提問 63

1.Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater, 2011. 23(6): p. 690-718.
2.Shin, H., S. Jo, and A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials, 2003. 24(24): p. 4353-4364.
3.Castner, D.G. and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surface Science, 2002. 500(1–3): p. 28-60.
4.Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-1138.
5.von der Mark, K., et al., Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell and Tissue Research, 2010. 339(1): p. 131-153.
6.Jensen, U.B., S. Lowell, and F.M. Watt, The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development, 1999. 126(11): p. 2409-2418.
7.Darouiche, R.O., Treatment of Infections Associated with Surgical Implants. New England Journal of Medicine, 2004. 350(14): p. 1422-1429.
8.Norowski, P.A. and J.D. Bumgardner, Biomaterial and antibiotic strategies for peri-implantitis: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 88B(2): p. 530-543.
9.Eisenberg, M.J. and K.J. Konnyu, Review of Randomized Clinical Trials of Drug-Eluting Stents for the Prevention of In-Stent Restenosis. The American Journal of Cardiology, 2006. 98(3): p. 375-382.
10.Lewis, F. and D. Mantovani, Methods to Investigate the Adhesion of Soft Nano-Coatings on Metal Substrates – Application to Polymer-Coated Stents. Macromolecular Materials and Engineering, 2009. 294(1): p. 11-19.
11.Luo, Y., et al., The friction and wear behavior of WC coating on medical grade titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013. 227(8): p. 845-849.
12.Sun, T., et al., Functional biointerface materials inspired from nature. Chem. Soc. Rev., 2011. 40(5): p. 2909-2921.
13.Cole, M.A., et al., Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009. 30(9): p. 1827-1850.
14.Geiger, B., J.P. Spatz, and A.D. Bershadsky, Environmental sensing through focal adhesions. Nat. Rev. Mole. Cell Biol., 2009. 10(1): p. 21-33.
15.Sniadecki, N.J., et al., Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. U.S.A., 2007. 104: p. 14553-14558.
16.Dalby, M.J., et al., Use of nanotopography to study mechanotransduction in fibroblasts - methods and perspectives. Eur. J. Cell Biol., 2004. 83(4): p. 159-169.
17.Nie, Z. and E. Kumacheva, Patterning surfaces with functional polymers. Nat. Mater., 2008. 7(4): p. 277-290.
18.Biswas, A., et al., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv. Coll. Inter. Sci., 2012. 170(1–2): p. 2-27.
19.Lu, W. and C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater., 2007. 6(11): p. 841-850.
20.Hauser, C.A.E. and S. Zhang, Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev., 2010. 39(8): p. 2780-2790.
21.Kramer, P., et al., Polymerization of para-xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. Journal of Polymer Science: Polymer Chemistry Edition, 1984. 22(2): p. 475-491.
22.Wu, P., et al., Deposition of High Purity Parylene- F Using Low Pressure Low Temperature Chemical Vapor Deposition. Journal of Electronic Materials, 1997. 26(8): p. 949-953.
23.Fortin, J.B. and T.M. Lu, A Model for the Chemical Vapor Deposition of Poly(para-xylylene) (Parylene) Thin Films. Chemistry of Materials, 2002. 14(5): p. 1945-1949.
24.Chen, H.-Y. and J. Lahann, Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir, 2010. 27(1): p. 34-48.
25.Naddaka, M., et al., Functionalization of parylene during its chemical vapor deposition. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(13): p. 2952-2958.
26.Yang, R., A. Asatekin, and K.K. Gleason, Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter, 2012. 8(1): p. 31-43.
27.Chen, H.-Y., et al., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11173-11178.
28.Nandivada, H., et al., Reactive Polymer Coatings that “Click”. Angewandte Chemie International Edition, 2006. 45(20): p. 3360-3363.
29.Katira, P., et al., Quantifying the Performance of Protein-Resisting Surfaces at Ultra-Low Protein Coverages using Kinesin Motor Proteins as Probes. Advanced Materials, 2007. 19(20): p. 3171-3176.
30.Chen, H.-Y. and J. Lahann, Preparation of Non-Fouling Coatings Made by Chemical Vapor Deposition Polymerization. Polymer Preprints, 2005.
31.Wu, J.-T., et al., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromolecular Rapid Communications, 2012. 33(10): p. 922-927.
32.Tsai, M.-Y., et al., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications, 2012. 48(89): p. 10969-10971.
33.Chen, H.-Y., et al., Vapor-based tri-functional coatings. Chemical Communications, 2013. 49(40): p. 4531-4533.
34.Elkasabi, Y., et al., Towards Multipotent Coatings: Chemical Vapor Deposition and Biofunctionalization of Carbonyl-Substituted Copolymers. Macromolecular Rapid Communications, 2008. 29(11): p. 855-870.
35.Elkasabi, Y., H.-Y. Chen, and J. Lahann, Multipotent Polymer Coatings Based on Chemical Vapor Deposition Copolymerization. Advanced Materials, 2006. 18(12): p. 1521-1526.
36.Lahann, J. and R. Langer, Novel Poly(p-xylylenes):  Thin Films with Tailored Chemical and Optical Properties. Macromolecules, 2002. 35(11): p. 4380-4386.
37.Seymour, J.P., et al., The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials, 2009. 30(31): p. 6158-6167.
38.Lahann, J., et al., Reactive Polymer Coatings:  A First Step toward Surface Engineering of Microfluidic Devices. Anal. Chem., 2003. 75(9): p. 2117-2122.
39.Lahann, J., et al., A New Method toward Microengineered Surfaces Based on Reactive Coating. Angewandte Chemie International Edition, 2001. 40(17): p. 3166-3169.
40.Chen, H.-Y. and J. Lahann, Vapor-Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Adv. Mater., 2007. 19(22): p. 3801-3808.
41.Chen, H.-Y. and J. Lahann, Fabrication of Discontinuous Surface Patterns within Microfluidic Channels Using Photodefinable Vapor-Based Polymer Coatings. Anal. Chem., 2005. 77(21): p. 6909-6914.
42.Sun, H.-Y., et al., Thiol-Reactive Parylenes as a Robust Coating for Biomedical Materials. Adv. Mater. Inter., 2014. 1(6): p. 1400093.
43.Chen, H.-Y., et al., Colloids with high-definition surface structures. Proc. Natl. Acad. Sci., 2007. 104(27): p. 11173-11178.
44.Wu, M.-G., et al., Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces. Langmuir, 2012. 28(40): p. 14313-14322.
45.Senkevich, J.J., et al., Selective deposition of ultrathin poly(p-lxylylene) films on dielectrics versus copper surfaces. Chemical Vapor Deposition, 2004. 10(5): p. 247-+.
46.Vaeth, K.M. and K.F. Jensen, Selective growth of poly(p-phenylene vinylene) prepared bg chemical vapor deposition. Advanced Materials, 1999. 11(10): p. 814-820.
47.Vaeth, K.M. and K.F. Jensen, Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of Materials, 2000. 12(5): p. 1305-1313.
48.Chen, H.-Y., et al., Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Advanced Materials, 2008. 20(18): p. 3474-3480.
49.D3359-02, A., Standard Test Methods for Measuring Adhesion by
Tape Test. ASTM International.
50.Iwatsuki, S., et al., Synthesis and Polymerization of 4-Vinyl [2.2]Paracyclophane. Polymer Bulletin, 1994. 32(1): p. 27-34.
51.Gorham, W.F., A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966. 4(12): p. 3027-3039.
52.Lewis, F., et al., Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications. Journal of Physics D: Applied Physics, 2008. 41(4): p. 045310.
53.Chen, C.-Y., et al., Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Science and Technology, 2008. 68(13): p. 2811-2817.
54.Kasuya, M., et al., Quantification of ATRP initiator density on polymer latex particles by fluorescence labeling technique using copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A: Polymer Chemistry, 2013. 51(19): p. 4042-4051.
55.Fritsche, A., et al., Mechanical characterization of anti-infectious, anti-allergic, and bioactive coatings on orthopedic implant surfaces. Journal of Materials Science, 2009. 44(20): p. 5544-5551.
56.Marx, K.A., Quartz Crystal Microbalance:  A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution−Surface Interface. Biomacromolecules, 2003. 4(5): p. 1099-1120.
57.Sauerbrey, G., Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Zeitschrift fur Physik, 1959. 155(2): p. 206-222.
58.Massia, S.P. and J.A. Hubbell, Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. Journal of Biological Chemistry, 1992. 267(20): p. 14019-14026.
59.Plouffe, B.D., et al., Peptide-Mediated Selective Adhesion of Smooth Muscle and Endothelial Cells in Microfluidic Shear Flow. Langmuir, 2007. 23(9): p. 5050-5055.
60.Hoyle, C.E. and C.N. Bowman, Thiol-Ene Click Chemistry. Angewandte Chemie-International Edition, 2010. 49(9): p. 1540-1573.
61.Branch, D.W., et al., Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials, 2001. 22(10): p. 1035-1047.
62.Nandivada, H., H.-Y. Chen, and J. Lahann, Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromole. Rapid Comm., 2005. 26(22): p. 1794-1799.
63.Wu, J.-T., et al., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromole. Rapid Comm., 2012. 33(10): p. 922-927.
64.Chen, H.-Y., et al., Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. J. Am. Chem. Soc., 2010. 132(51): p. 18023-18025.
65.Lu, B., et al., A study of the autofluorescence of parylene materials for [small mu ]TAS applications. Lab Chip, 2010. 10(14): p. 1826-1834.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 藉由格林納置換鏈成長聚合法合成全共軛硬桿-硬桿雙嵌段共聚高分子PPP-P3BT及其自組裝行為探討與奈米混成系統之研究
2. 混煉製程對於二氧化矽填充橡膠系統的動態機械性質影響:混煉參數與矽烷偶聯劑反應性分析
3. 綠色再生資源於水路建材之應用
4. 化學氣相沉積共聚合法製備多功能性聚對二甲苯鍍膜及其特性分析
5. 以格林鈉反應合成全共軛雙嵌段共聚高分子PPP-P3EHT及其共結晶行為、自組裝結構與光電性質研究
6. 利用半批式種子乳化聚合法聚合核-殼型乳液奈米顆粒並應用於感壓膠針對交聯影響的特性探討
7. 碳氫化合物對含有二氧化矽填料之丁苯-天然共混橡膠性能之影響
8. 高性能綠色輪胎的非平衡動態混煉過程與分散劑反應性研究:超小角X光分析
9. 多功能聚對二甲苯:奈米尺度靈活與專一性之表面控制
10. 合成核殼型奈米顆粒及其應用於剪切增稠流體之研究探討
11. 混煉製程對於橡膠奈米複材之動態機械性質影響:奈米結構與輪胎應用之關聯
12. 仿生人工角膜及高度多孔性人工角膜襯裙與奈米混成太陽能電池元件開發與應用
13. 氧化鋅/聚己烷噻吩高分子與氧化鋅/雙嵌段共聚高分子奈米原位混成系統:自組裝、特性及光電應用之探討
14. 硬桿/柔曲嵌段共聚高分子之陰離子合成,自組裝行為與超分子結構研究
15. 開發低油耗與高濕抓之新一代綠色輪胎