|
[1]Kim, W. J., Lim, J. H., Lee, J. S., Lee, S. D., Kim, J. H., & Oh, Y. M. (2015). Comprehensive analysis of transcriptome sequencing data in the lung tissues of COPD subjects. International journal of genomics, 2015. [2]Bottomly, D., Walter, N. A., Hunter, J. E., Darakjian, P., Kawane, S., Buck, K. Jessica Ezzell Hunter, et al. (2011). Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PloS one, 6(3), e17820. [3]Slonim, D. K., & Yanai, I. (2009). Getting started in gene expression microarray analysis. PLoS Comput Biol, 5(10), e1000543. [4]Anders, S., McCarthy, D. J., Chen, Y., Okoniewski, M., Smyth, G. K., Huber, W., & Robinson, M. D. (2013). Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature protocols, 8(9), 1765-1786. [5]Dündar, F., Skrabanek, L., & Zumbo, P. (2015). Introduction to differential gene expression analysis using RNA-seq. [6]Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology, 11(3), 1. [7]Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC bioinformatics, 11(1), 1. [8]Jacob, L., Gagnon-Bartsch, J. A., & Speed, T. P. (2016). Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed. Biostatistics, 17(1), 16-28. [9]Risso, D., Ngai, J., Speed, T. P., & Dudoit, S. (2014). Normalization of RNA-seq data using factor analysis of control genes or samples. Nature biotechnology, 32(9), 896-902. [10]Zyprych-Walczak, J., Szabelska, A., Handschuh, L., Górczak, K., Klamecka, K., Figlerowicz, M., & Siatkowski, I. (2015). The impact of normalization methods on RNA-Seq data analysis. BioMed research international, 2015. [11]Gagnon-Bartsch, J., Jacob, L., & Speed, T. P. (2013). Removing unwanted variation from high dimensional data with negative controls. Berkeley: Department of Statistics. University of California. [12]Lorenz, D. J., Gill, R. S., Mitra, R., & Datta, S. (2014). Using RNA-seq data to detect differentially expressed genes. In Statistical Analysis of Next Generation Sequencing Data (pp. 25-49). Springer International Publishing. [13]Dillies, M. A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, et al. (2013). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in bioinformatics, 14(6), 671-683. [14]Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. [15]Risso, D., Schwartz, K., Sherlock, G., & Dudoit, S. (2011). GC-content normalization for RNA-Seq data. BMC bioinformatics, 12(1), 480. [16]McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Vol. 37). CRC press. [17]Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. [18]Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of statistics, 2013-2035.. [19]Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300. [20]Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine, 27(2), 157-172. [21]McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, gks042. http://doi.org/10.1093/nar/gks042 [22]Reddy, R. (2015). A Comparison of Methods: Normalizing High-Throughput RNA Sequencing Data. bioRxiv, 026062. http://doi.org/10.1101/026062 [23]Konishi, T. (2016). Parametric analysis of RNA-seq expression data. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 21(6), 639–647. http://doi.org/10.1111/gtc.12372 [24]De Boer, J. F., Cense, B., Park, B. H., Pierce, M. C., Tearney, G. J., & Bouma, B. E. (2003). Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics letters, 28(21), 2067-2069.
|