跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孟璇
研究生(外文):Hsuan Meng
論文名稱:支持性牙周病治療階段失牙風險的統計分析模型
論文名稱(外文):Statistical analysis of the risk for tooth loss during supportive periodontal therapy
指導教授:杜裕康杜裕康引用關係
指導教授(外文):Yu-Kang Tu
口試委員:林菀俞陳漪紋
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:統計碩士學位學程
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:牙齒脫落積極性牙周病治療前支持性牙周病治療階段羅吉斯迴歸卜瓦松迴歸廣義估計方程式
外文關鍵詞:tooth lossbefore active periodontal therapysupportive periodontal therapy (SPT)logistic regressionPoisson regressiongeneralized estimating equations (GEE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Background
Dental caries and periodontal disease are the two most common oral diseases. In comparison to tooth decay, periodontal disease is harder to be detected and more likely to be overlooked. Periodontal disease is a disease affecting tissue surrounding the teeth, caused by dental plaque attached to the tooth surface. If left untreated, it will lead to loosening and subsequent loss of teeth. Recent researches showed that periodontal disease and tooth loss can also affect systemic health, such as an increased risk for myocardial infarction, arteriosclerosis, stroke and so on.

Objective
The aim of this study was to investigate the risk factors for tooth loss measured before active periodontal therapy (APT) and during supportive periodontal therapy (SPT). These risk factors related to tooth loss were collected and measured at the patient level and tooth level.

Materials and Methods
In three private practices in the UK, 100 patients with periodontal diseases were recruited and treated by the same periodontist. Clinical and radiographic measurements were undertaken from each patient on three occasions, including before the active periodontal therapy, supportive periodontal therapy and the last follow-up. Tooth loss was recorded in the last follow-up.
We first analyze the associations between the risk factors and tooth loss at the patient level. In the logistic regression, the tooth loss was coded 1 for patients who lost at least one tooth and 0 for those who did not lose any tooth during the supportive periodontal therapy. Then in the Poisson regression analysis, the number of tooth loss (counts) was used as the outcome variable. For the tooth-level analysis, as some patients lost more than 1 tooth, we used the generalized estimating equations to take into account the clustering of teeth within patients.

Results
We found that patient’s age significantly increased the risk for tooth loss at the patient level. The prognosis based on PR score system was effective in the tooth loss. Age, endodontic, furcation and prognosis significantly contribute to tooth loss before active periodontal therapy. The tooth level factors associated with tooth loss were age, furcation involvement and prognosis scores.

Conclusion
The following patient level of risk factors for tooth loss were age and prognosis (PR score system). The following tooth level of risk factors for tooth loss were endodontic, furcation involvement and prognosis scores.

致謝 i
摘要 ii
Abstract iv
第一章、緒論 1
第一節、研究背景 1
第二節、研究目的 3
第二章、文獻回顧 4
第一節、失牙之相關危險因素 4
第二節、計數資料(Count data)相關分析方法 7
第三節、廣義估計方程式相關分析方法 15
第三章、材料及方法 17
第一節、研究架構 17
第二節、資料來源 20
第三節、研究變項 21
第四節、信度分析 27
第五節、分析方法 28
第四章、研究結果 34
第一節、病人層級 34
第二節、牙齒層級 45
第五章、討論與結論 55
第一節、研究發現 55
第二節、結果比較 55
第三節、計數型資料 57
第四節、研究限制與建議 58
第五節、結論 59
附錄 60
參考文獻 65


1.Lowe, G., et al., Total tooth loss and prevalent cardiovascular disease in men and women: Possible roles of citrus fruit consumption, vitamin C, and inflammatory and thrombotic variables. Journal of Clinical Epidemiology, 2003. 56(7): p. 694-700.
2.Okoro, C.A., et al., Tooth Loss and Heart Disease: Findings from the Behavioral Risk Factor Surveillance System. American Journal of Preventive Medicine, 2005. 29(5, Supplement 1): p. 50-56.
3.Völzke, H., et al., Tooth loss is independently associated with the risk of acquired aortic valve sclerosis. American Heart Journal, 2005. 150(6): p. 1198-1203.
4.Demmer, R.T. and M. Desvarieux, Periodontal infections and cardiovascular disease: The heart of the matter. The Journal of the American Dental Association, 2006. 137, Supplement 2: p. S14-S20.
5.Santos-Pereira, S.A., et al., Chronic periodontitis and pre-term labour in Brazilian pregnant women: an association to be analysed. Journal of Clinical Periodontology, 2007. 34(3): p. 208-213.
6.Demmer, R.T., D.R. Jacobs, and M. Desvarieux, Periodontal Disease and Incident Type 2 Diabetes. Results from the First National Health and Nutrition Examination Survey and its Epidemiologic Follow-Up Study, 2008. 31(7): p. 1373-1379.
7.Dhadse, P., D. Gattani, and R. Mishra, The link between periodontal disease and cardiovascular disease: How far we have come in last two decades ? Journal of Indian Society of Periodontology, 2010. 14(3): p. 148-154.
8.Drisko, C.H., Nonsurgical periodontal therapy. Periodontol 2000, 2001. 25: p. 77-88.
9.Goldman, H.M. and D.W. Cohen, Periodontal therapy. 1973: CV Mosby Co.
10.Renvert, S. and G.R. Persson, Supportive periodontal therapy. Periodontology 2000, 2004. 36(1): p. 179-195.
11.Wood, W.R., G.W. Greco, and W.T. McFall Jr, Tooth Loss in Patients With Moderate Periodontitis After Treatment and Long–Term Maintenance Care. Journal of Periodontology, 1989. 60(9): p. 516-520.
12.Machtei, E.E., et al., Longitudinal study of predictive factors for periodontal disease and tooth loss. Journal of clinical periodontology, 1999. 26(6): p. 374-380.
13.Albandar, J.M., et al., Cigar, pipe, and cigarette smoking as risk factors for periodontal disease and tooth loss. Journal of periodontology, 2000. 71(12): p. 1874-1881.
14.Hirano, H., et al., Association of natural tooth loss with genetic variation at the human matrix Gla protein locus in elderly women. Journal of human genetics, 2003. 48(6): p. 288-292.
15.Eickholz, P., et al., Tooth loss after active periodontal therapy. 1: Patient‐related factors for risk, prognosis, and quality of outcome. Journal of clinical periodontology, 2008. 35(2): p. 165-174.
16.Matuliene, G., et al., Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance. Journal of clinical periodontology, 2008. 35(8): p. 685-695.
17.Pretzl, B., et al., Tooth loss after active periodontal therapy. 2: tooth‐related factors. Journal of Clinical Periodontology, 2008. 35(2): p. 175-182.
18.Chambrone, L., et al., Predictors of tooth loss during long-term periodontal maintenance: a systematic review of observational studies. Journal of Clinical Periodontology, 2010. 37(7): p. 675-684.
19.Fardal, Ø., A.C. Johannessen, and G.J. Linden, Tooth loss during maintenance following periodontal treatment in a periodontal practice in Norway. Journal of Clinical Periodontology, 2004. 31(7): p. 550-555.
20.Chambrone, L.A. and L. Chambrone, Tooth loss in well‐maintained patients with chronic periodontitis during long‐term supportive therapy in Brazil. Journal of clinical periodontology, 2006. 33(10): p. 759-764.
21.Leung, W.K., et al., Tooth loss in treated periodontitis patients responsible for their supportive care arrangements. Journal of clinical periodontology, 2006. 33(4): p. 265-275.
22.Holm, G., Smoking as an Additional Risk for Tooth Loss*. Journal of Periodontology, 1994. 65(11): p. 996-1001.
23.Al-Shammari, K.F., et al., Risk indicators for tooth loss due to periodontal disease. Journal of periodontology, 2005. 76(11): p. 1910-1918.
24.McGuire, M.K. and M.E. Nunn, Prognosis versus actual outcome. III. The effectiveness of clinical parameters in accurately predicting tooth survival. Journal of periodontology, 1996. 67(7): p. 666-674.
25.Tronstad, L., et al., Influence of coronal restorations on the periapical health of endodontically treated teeth. Dental Traumatology, 2000. 16(5): p. 218-221.
26.Zhong, Y., et al., Association of Endodontic Involvement with Tooth Loss in the Veterans Affairs Dental Longitudinal Study. Journal of Endodontics, 2010. 36(12): p. 1943-1949.
27.Gilbert, G.H., et al., Predicting tooth loss during a population-based study: role of attachment level in the presence of other dental conditions. Journal of periodontology, 2002. 73(12): p. 1427-1436.
28.Armeli, S., et al., Daily evaluation of anticipated outcomes from alcohol use among college students. Journal of Social and Clinical Psychology, 2005. 24(6): p. 767.
29.Chang, Y. and B. Mark, Effects of learning climate and registered nurse staffing on medication errors. Nurs Res, 2011. 60(1): p. 32-9.
30.Coxe, S., S.G. West, and L.S. Aiken, The analysis of count data: A gentle introduction to Poisson regression and its alternatives. Journal of personality assessment, 2009. 91(2): p. 121-136.
31.Copeland, L.B., et al., Predictors of tooth loss in two US adult populations. Journal of public health dentistry, 2004. 64(1): p. 31-37.
32.Cohen, J., et al., Applied multiple regression/correlation analysis for the behavioral sciences. 2013: Routledge.
33.Lambert, D., Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 1992. 34(1): p. 1-14.
34.Zuur, A.F., et al., Zero-truncated and zero-inflated models for count data, in Mixed effects models and extensions in ecology with R. 2009, Springer. p. 261-293.
35.Long, J.S. and J. Freese, Regression models for categorical dependent variables using Stata. 2006: Stata press.
36.Cameron, A.C. and P.K. Trivedi, Regression analysis of count data. Vol. 53. 2013: Cambridge university press.
37.Nelder, J.A. and R.J. Baker, Generalized linear models. Encyclopedia of statistical sciences, 1972.
38.Agresti, A., Categorical Data Analysis. 2013: Wiley.
39.Weisstein, E.W., Maximum likelihood. 2003.
40.Johnson, N.L., A.W. Kemp, and S. Kotz, Univariate discrete distributions. Vol. 444. 2005: John Wiley & Sons.
41.Greene, W., Functional forms for the negative binomial model for count data. Economics Letters, 2008. 99(3): p. 585-590.
42.Zwilling, M., Negative binomial regression. The Mathematica Journal, 2013. 15: p. 1-18.
43.Ridout, M., C.G. Demétrio, and J. Hinde. Models for count data with many zeros. in Proceedings of the XIXth international biometric conference. 1998.
44.Ridout, M., J. Hinde, and C.G. DeméAtrio, A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives. Biometrics, 2001. 57(1): p. 219-223.
45.Pickles, A., Generalized estimating equations. Encyclopedia of biostatistics, 1998.
46.Hanley, J.A., A. Negassa, and J.E. Forrester, Statistical analysis of correlated data using generalized estimating equations: an orientation. American journal of epidemiology, 2003. 157(4): p. 364-375.
47.LIANG, K.-Y. and S.L. ZEGER, Longitudinal data analysis using generalized linear models. Biometrika, 1986. 73(1): p. 13-22.
48.Hardin, J.W. and J.M. Hilbe, Generalized Estimating Equations, Second Edition. 2012: Taylor & Francis.
49.Lindhe, J., et al., Consensus report: chronic periodontitis. Annals of Periodontology, 1999. 4(1): p. 38-38.
50.Tonetti, M. and N. Claffey, Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Journal of Clinical Periodontology, 2005. 32(s6): p. 210-213.
51.O''Leary, T.J., R.B. Drake, and J.E. Naylor, The plaque control record. Journal of periodontology, 1972. 43(1): p. 38-38.
52.Ainamo, J. and I. Bay, Problems and proposals for recording gingivitis and plaque. International dental journal, 1975. 25(4): p. 229-235.
53.Laster, L., K.W. Laudenbach, and N.H. Stoller, An evaluation of clinical tooth mobility measurements. Journal of periodontology, 1975. 46(10): p. 603-607.
54.Hamp, S.E., S. Nyman, and J. Lindhe, Periodontal treatment of multi rooted teeth. Journal of clinical periodontology, 1975. 2(3): p. 126-135.
55.Lang, N.P. and M.S. Tonetti, Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent, 2003. 1(1): p. 7-16.
56.Page, R.C., et al., Longitudinal validation of a risk calculator for periodontal disease. Journal of clinical periodontology, 2003. 30(9): p. 819-827.
57.Graetz, C., et al., Retention of questionable and hopeless teeth in compliant patients treated for aggressive periodontitis. Journal of clinical periodontology, 2011. 38(8): p. 707-714.
58.Ulstrup, J., et al., Sensitivity of Western blotting (compared with ELISA and immunofluorescence) during seroconversion after HTLV-III infection. The Lancet, 1986. 327(8490): p. 1151-1152.
59.Esteves, H., A. Correia, and F. Araújo, Classification of extensively damaged teeth to evaluate prognosis. Journal of the Canadian Dental Association, 2011. 77(5): p. 305.
60.Landis, J.R. and G.G. Koch, The measurement of observer agreement for categorical data. biometrics, 1977: p. 159-174.
61.Vuong, Q.H., Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica, 1989. 57(2): p. 307-333.
62.Greene, W.H., Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. 1994.
63.Burt, B., et al., Risk factors for tooth loss over a 28-year period. Journal of Dental Research, 1990. 69(5): p. 1126-1130.
64.Eklund, S.A. and B.A. Burt, Risk factors for total tooth loss in the United States; longitudinal analysis of national data. Journal of public health dentistry, 1994. 54(1): p. 5-14.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊