跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晨宇
研究生(外文):Chen-Yu Lee
論文名稱:運用窗函數及稀疏傅立葉轉換於干涉條紋解相之研發
論文名稱(外文):Research and Development of Windowed Fourier Transform & SFT Algorithm on Phase Retrieval for Interference Fringes Analysis
指導教授:李世光李世光引用關係
口試委員:黃君偉李舒昇吳文中
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:干涉條紋分析傅立葉轉換法窗函數傅立葉轉換法稀疏傅立葉轉換法頻譜隨機重排平坦窗函數
外文關鍵詞:fringe pattern analysisFourier transform methodwindowed Fourier transformsparse Fourier transformSpectrum permutationflat window Function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究領域屬於三維表面形貌量測技術,其應用範圍相當廣泛,例如半導體產業的元件封裝、光電產業的鏡面形狀與粗糙度量測、通訊產業的微機電裝置檢測、以及生醫產業的細胞外觀輪廓觀察等等。此技術目前最重視的就在檢測精準度和速度,希望透過精準度的提高和檢測分析時間的縮短達到產線生產成本降低的目標。因此,本研究也分成兩大部分:一是表面形貌量測技術之精準度的提升,二是介紹新的訊號分析技術-稀疏傅立葉轉換(Sparse Fourier Transform, SFT),並探討SFT在現有干涉條紋圖分析法方面的可適性。
本研究的表面形貌量測技術是針對一張干涉條紋圖進行傅立葉轉換,並透過提取其頻譜中的相位資訊重建出物體表面的形貌。雖然這種屬於全域性轉換的傅立葉轉換技術能降低雜訊對頻譜的影響,但此方法仍面臨應用過程中因為像素相互影響造成的頻譜混疊或濾波器設計的不完善等因素而造成的量測精準度不足問題。
為解決此問題,本研究採取了窗函數傅立葉轉換法(Windowed Fourier Transform, WFT)能針對頻譜局部分析的特色。首先,用一個移動窗函數將整個條紋圖切割成許多塊局部條紋,並以快速傅立葉轉換(Fast Fourier Transform, FFT)取得每塊局部條紋圖的頻譜;然後透過所有區塊頻譜的疊加,就可獲得完整條紋的頻譜分布。比起前述FT全域頻譜技術,此方法所採用的局部頻譜分析擁有更簡單的結構,也更不容易發生頻譜混疊現象。此外,藉由適當的閥域值設定,也能有效地降低雜訊影響。
本論文利用麥克森光學干涉實驗數據以及在MATLAB平台上進行的表面形貌條紋投影模擬,驗證了WFT在形貌重建精準度上的效能提升。值得注意的是,此WFT技術的九成運算時間都用於窗函數進行FFT頻譜提取;但窗函數頻域卻只存在少數非零數值,且只出現於特定座標位置上。因此,本論文的第二部分研究重點就放在如何有效率地處理此種稀疏分布的窗函數頻域,也就是2012年才提出的SFT技術。研究中將針對稀疏傅立葉轉換進行系統化理論說明,介紹其演算法的理論架構及其演算法重建訊號的誤差準則,以及MIT Hassanieh等人最新提出的重建訊號頻譜方法。此外,也搭配一些MATLAB演算模擬範例描述了統整演算法所可能面臨的關鍵問題與解決技術,其中包括頻譜隨機重新排列、平坦窗函數濾波器的設計和降取樣FFT。此技術顯示以SFT取代窗函數FFT運算將在條紋分析應用方面大幅縮短干涉圖案解相的整體運算時間。



This thesis is related to three-dimensional metrology system, a widely used technique that has been applied in monitoring semiconductor elements packing, shape/roughness of optical lenses/mirrors, microelectromechanical devices, panel geometry checking, and the cell morphology. The two most significant performance factors in morphology technique are precision and speed, and the corresponding improvements, i.e. enhancing the measurement accuracy and reducing the processing time can ensure the production quality and lower its costs. Consequently, there are two major aspects in this thesis. One is the accuracy improvement of metrology techniques, and the other is the introduction of a new signal analysis method called Sparse Fourier Transform (SFT) and exploring its applicability in the current fringe analysis techniques.
The metrology technique used in this research starts with the Fourier transformation of a single frame of fringe pattern, and reconstruct the object morphology through the phase information obtained from its spectrum. Although the noise effect on the spectrum can be reduced by using this full-field based FT algorithms, there still exist some drawbacks on the accuracy due to either frequency aliasing caused by pixels’ interactions or the imperfect design of the filters.
To solve the problem mentioned above, we take the advantage of local spectral analysis used in Windowed Fourier Transform (WFT). Firstly, the original spectrum of fringes pattern is partitioned into many small blocks by a moving window function, and the frequency spectrum of each block is obtained by Fast Fourier Transform (FFT). And then, the final spectrum is achieved by adding up the spectrum of each block. As compared to the conventional full-field FT, this local analysis based technique is simpler in its structure and less affected by aliasing. In addition, by a proper choice of cutoff frequency, this technique can still guarantee an effective noise reduction.
By comparing with the experimental pattern obtained from Michelson interferometer and simulated pattern generated on the MATLAB coding, we have proved the WFT’s advantages on the accuracy of morphology reconstruction. It is worth noting that 70% of computer processing time is devoted to FFT of window function, whereas there are only a few non-zero values on the frequency spectrum of window function and exist only on specific coordinates. Hence, the major content of the 2nd part in this thesis is focusing on an efficient processing theory proposed since 2012, i.e. SFT, in dealing with these sparsely distributed spectrum. We’ll systemically introduce the theoretical aspects of SFT, its algorithm’s theoretical structure, the error guarantee of signal recovery, as well as the signal reconstruction technique newly proposed by MIT’s Hassanieh. Besides, by implementing a few MATLAB simulation examples, we also discussed some key technique problems and possible solutions such as spectrum permutation, subsampled FFT and the design of flat window function. It appears that replacing window functions’ FFT by SFT is very likely to greatly reduce the processing time of fringe pattern analysis.


摘要 i
目錄 v
圖目錄 viii
Chapter 1. 緒論 1
1.1. 研究背景與動機 1
1.2. 文獻回顧 2
1.3. 論文架構 4
Chapter 2. 研究原理 5
2.1. 干涉理論 5
2.2. 干涉條紋模擬 7
2.2.1. 單調分布條紋圖 8
2.2.2. 封閉式/馬鞍型條紋圖 9
2.2.3. Peaks條紋圖 10
2.2.4. 雜訊 11
2.3. 干涉條紋分析方法 12
2.3.1. 相移法 13
2.3.2. 傅立葉轉換法 14
2.4. 相位重建技術 16
Chapter 3. 窗函數傅立葉轉換法研究 21
3.1.1. 基本原理 21
3.1.2. 窗函數的選擇 22
3.1.3. 窗函數的積分範圍 23
Chapter 4. 實驗流程與結果 24
4.1. 干涉圖解相分析流程 24
4.2. 演算法驗證 24
4.2.1. 相關模擬參數設定 25
4.2.2. FT與WFT誤差比較 26
4.2.3. FT與WFT抗雜訊比較 28
4.2.1. WFT運算時間分析 29
4.3. 實際物體之量測 31
4.3.1. 實驗系統 31
4.3.2. 實驗結果 32
Chapter 5. 稀疏傅立葉轉換法研究 35
5.1. 誤差準則 35
5.2. SFT演算理論架構 36
5.3. 符號說明 37
5.4. 關鍵技術原理 37
5.4.1. 頻譜隨機重新排列 38
5.4.2. 平坦窗函數濾波器 39
5.4.3. 降取樣FFT 43
5.5. 頻譜重建演算法 44
5.5.1. Location Loop運算驗證範例 46
5.6. SFT於WFT干涉條紋解相可適性分析 48
5.6.1. 干涉條紋頻譜稀疏度 48
5.6.2. 高斯窗函數譜稀疏度 50
5.6.1. SFT於WFT加速結果 51
Chapter 6. 結論與未來展望 53
6.1. 結論 53
6.2. 未來展望 53
參考文獻 55



[1]Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Applied optics, vol. 35, no. 1, pp. 51-60, 1996.
[2]M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” JosA, vol. 72, no. 1, pp. 156-160, 1982.
[3]M. Takeda, and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Applied optics, vol. 22, no. 24, pp. 3977-3982, 1983.
[4]M. Takeda, "Measurements of extreme physical phenomena by Fourier fringe analysis, a review: from sub-Ångstrom lattice distortion measurement to attosecond pulse phase measurement." pp. 80116S-80116S-7.
[5]J. Zhong, and J. Weng, “Generalized Fourier analysis for phase retrieval of fringe pattern,” Optics express, vol. 18, no. 26, pp. 26806-26820, 2010.
[6]Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Applied Optics, vol. 43, no. 13, pp. 2695-2702, 2004.
[7]Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,” Applied optics, vol. 47, no. 29, pp. 5408-5419, 2008.
[8]J. Zhong, and J. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Optics letters, vol. 30, no. 19, pp. 2560-2562, 2005.
[9]M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Applied optics, vol. 45, no. 34, pp. 8722-8732, 2006.
[10]J. W. Cooley, and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297-301, 1965.
[11]E. Kushilevitz, and Y. Mansour, “Learning decision trees using the Fourier spectrum,” SIAM Journal on Computing, vol. 22, no. 6, pp. 1331-1348, 1993.
[12]L. A. Levin, "Randomness and nondeterminism." pp. 1418-1419.
[13]Y. Mansour, “Randomized interpolation and approximation of sparse polynomials,” SIAM Journal on Computing, vol. 24, no. 2, pp. 357-368, 1995.
[14]A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, "Near-optimal sparse Fourier representations via sampling." pp. 152-161.
[15]A. Akavia, S. Goldwasser, and S. Safra, "Proving hard-core predicates using list decoding." pp. 146-159.
[16]A. C. Gilbert, S. Muthukrishnan, and M. Strauss, "Improved time bounds for near-optimal sparse Fourier representations." pp. 59141A-59141A-15.
[17]H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Nearly optimal sparse fourier transform." pp. 563-578.
[18]B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi, "Sample-optimal average-case sparse fourier transform in two dimensions." pp. 1258-1265.
[19]H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Simple and practical algorithm for sparse Fourier transform." pp. 1183-1194.
[20]L. Shi, O. Andronesi, H. Hassanieh, B. Ghazi, D. Katabi, and E. Adalsteinsson, "Mrs sparse-fft: Reducing acquisition time and artifacts for in vivo 2d correlation spectroscopy."
[21]H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, "Faster gps via the sparse fourier transform." pp. 353-364.
[22]L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light field reconstruction using sparsity in the continuous fourier domain,” ACM Transactions on Graphics (TOG), vol. 34, no. 1, pp. 12, 2014.
[23]H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, "Ghz-wide sensing and decoding using the sparse fourier transform." pp. 2256-2264.
[24]G. Reid, “Automatic fringe pattern analysis: a review,” Optics and Lasers in Engineering, vol. 7, no. 1, pp. 37-68, 1987.
[25]D. W. Robinson, G. T. Reid, and P. de Groot, “Interferogram analysis: digital fringe pattern measurement techniques,” Physics Today, vol. 47, pp. 66, 1994.
[26]Y. Surrel, "Fringe analysis," Photomechanics, pp. 55-102: Springer, 2000.
[27]Z. Wang, “Development and application of computer-aided fringe analysis,” 2003.
[28]Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Optics and Lasers in Engineering, vol. 45, no. 2, pp. 304-317, 2007.
[29]Q. Kemao, “Windowed Fourier transform for fringe pattern analysis: addendum,” Applied optics, vol. 43, no. 17, pp. 3472-3473, 2004.
[30]陳昭宇, “高速電子斑點干涉儀之研製: 整合雷射都卜勒干涉術與時進相移法之創新設計,” 國立臺灣大學應用力學研究所學位論文, pp. 1-181, 2005.
[31]D. C. Ghiglia, and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107-117, 1994.
[32]H. G. Feichtinger, and K. Gröchenig, “Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view,” Wavelets: A tutorial in theory and applications, vol. 2, pp. 359-398, 1992.
[33]F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top