|
[1]Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Applied optics, vol. 35, no. 1, pp. 51-60, 1996. [2]M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” JosA, vol. 72, no. 1, pp. 156-160, 1982. [3]M. Takeda, and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Applied optics, vol. 22, no. 24, pp. 3977-3982, 1983. [4]M. Takeda, "Measurements of extreme physical phenomena by Fourier fringe analysis, a review: from sub-Ångstrom lattice distortion measurement to attosecond pulse phase measurement." pp. 80116S-80116S-7. [5]J. Zhong, and J. Weng, “Generalized Fourier analysis for phase retrieval of fringe pattern,” Optics express, vol. 18, no. 26, pp. 26806-26820, 2010. [6]Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Applied Optics, vol. 43, no. 13, pp. 2695-2702, 2004. [7]Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,” Applied optics, vol. 47, no. 29, pp. 5408-5419, 2008. [8]J. Zhong, and J. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Optics letters, vol. 30, no. 19, pp. 2560-2562, 2005. [9]M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Applied optics, vol. 45, no. 34, pp. 8722-8732, 2006. [10]J. W. Cooley, and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297-301, 1965. [11]E. Kushilevitz, and Y. Mansour, “Learning decision trees using the Fourier spectrum,” SIAM Journal on Computing, vol. 22, no. 6, pp. 1331-1348, 1993. [12]L. A. Levin, "Randomness and nondeterminism." pp. 1418-1419. [13]Y. Mansour, “Randomized interpolation and approximation of sparse polynomials,” SIAM Journal on Computing, vol. 24, no. 2, pp. 357-368, 1995. [14]A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, "Near-optimal sparse Fourier representations via sampling." pp. 152-161. [15]A. Akavia, S. Goldwasser, and S. Safra, "Proving hard-core predicates using list decoding." pp. 146-159. [16]A. C. Gilbert, S. Muthukrishnan, and M. Strauss, "Improved time bounds for near-optimal sparse Fourier representations." pp. 59141A-59141A-15. [17]H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Nearly optimal sparse fourier transform." pp. 563-578. [18]B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi, "Sample-optimal average-case sparse fourier transform in two dimensions." pp. 1258-1265. [19]H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Simple and practical algorithm for sparse Fourier transform." pp. 1183-1194. [20]L. Shi, O. Andronesi, H. Hassanieh, B. Ghazi, D. Katabi, and E. Adalsteinsson, "Mrs sparse-fft: Reducing acquisition time and artifacts for in vivo 2d correlation spectroscopy." [21]H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, "Faster gps via the sparse fourier transform." pp. 353-364. [22]L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light field reconstruction using sparsity in the continuous fourier domain,” ACM Transactions on Graphics (TOG), vol. 34, no. 1, pp. 12, 2014. [23]H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, "Ghz-wide sensing and decoding using the sparse fourier transform." pp. 2256-2264. [24]G. Reid, “Automatic fringe pattern analysis: a review,” Optics and Lasers in Engineering, vol. 7, no. 1, pp. 37-68, 1987. [25]D. W. Robinson, G. T. Reid, and P. de Groot, “Interferogram analysis: digital fringe pattern measurement techniques,” Physics Today, vol. 47, pp. 66, 1994. [26]Y. Surrel, "Fringe analysis," Photomechanics, pp. 55-102: Springer, 2000. [27]Z. Wang, “Development and application of computer-aided fringe analysis,” 2003. [28]Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Optics and Lasers in Engineering, vol. 45, no. 2, pp. 304-317, 2007. [29]Q. Kemao, “Windowed Fourier transform for fringe pattern analysis: addendum,” Applied optics, vol. 43, no. 17, pp. 3472-3473, 2004. [30]陳昭宇, “高速電子斑點干涉儀之研製: 整合雷射都卜勒干涉術與時進相移法之創新設計,” 國立臺灣大學應用力學研究所學位論文, pp. 1-181, 2005. [31]D. C. Ghiglia, and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107-117, 1994. [32]H. G. Feichtinger, and K. Gröchenig, “Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view,” Wavelets: A tutorial in theory and applications, vol. 2, pp. 359-398, 1992. [33]F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.
|