|
[1]J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Reports on progress in physics, vol. 70, p. 1, 2006. [2]D. Y. Fedyanin and A. V. Arsenin, "Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes," Photonics and Nanostructures-Fundamentals and Applications, vol. 8, pp. 264-272, 2010. [3]B. H. Cheng, K. J. Chang, Y.-C. Lan, and D. P. Tsai, "Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures," Scientific reports, vol. 5, 2015. [4]I. M. Mandel, I. Bendoym, Y. U. Jung, A. B. Golovin, and D. T. Crouse, "Dispersion engineering of surface plasmons," Optics express, vol. 21, pp. 31883-31893, 2013. [5]P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Optics Express, vol. 14, pp. 7063-7072, 2006. [6]T.-H. Weng, "Multiple Narrow-Band Coupling of Surface Plasmons in Quasi-periodic Remote-grating System," 國立國立臺灣大學碩士論文, 2012. [7]"Lumerical Solutions, Inc.." https://www.lumerical.com/ [8]J. Zenneck, "Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie," Annalen der Physik, vol. 328, pp. 846-866, 1907. [9]S. K. Gray, "Theory and modeling of plasmonic structures," The Journal of Physical Chemistry C, vol. 117, pp. 1983-1994, 2012. [10]W. L. Barnes, "Surface plasmon–polariton length scales: a route to sub-wavelength optics," Journal of optics A: pure and applied optics, vol. 8, p. S87, 2006. [11]T.-W. Lee and S. Gray, "Subwavelength light bending by metal slit structures," Optics express, vol. 13, pp. 9652-9659, 2005. [12]D. Y. Fedyanin, A. Arsenin, V. Leiman, and A. Gladun, "Backward waves in planar insulator–metal–insulator waveguide structures," Journal of Optics, vol. 12, p. 015002, 2009. [13]E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," science, vol. 311, pp. 189-193, 2006. [14]Y.-H. Chen, J. Li, M.-L. Ren, B.-L. Wang, J.-X. Fu, S.-Y. Liu, et al., "Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces," Applied Physics Letters, vol. 98, p. 261912, 2011. [15]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003. [16]R. Oulton, G. Bartal, D. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New Journal of Physics, vol. 10, p. 105018, 2008. [17]H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56-62, 2007. [18]P. Berini and I. De Leon, "Surface plasmon-polariton amplifiers and lasers," Nature Photonics, vol. 6, pp. 16-24, 2012. [19]D. K. Gramotnev, S. J. Tan, and M. L. Kurth, "Plasmon nanofocusing with negative refraction in a high-index dielectric wedge," Plasmonics, vol. 9, pp. 175-184, 2014. [20]B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Applied physics letters, vol. 90, p. 013114, 2007. [21]M. Faryad, A. S. Hall, G. D. Barber, T. E. Mallouk, and A. Lakhtakia, "Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material," JOSA B, vol. 29, pp. 704-713, 2012. [22]R. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, p. 874, 1957. [23]D. Pines, "Collective energy losses in solids," Reviews of Modern Physics, vol. 28, p. 184, 1956. [24]E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968. [25]E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Zeitschrift für Physik, vol. 241, pp. 313-324, 1971. [26]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968. [27]K. Berthold, W. Beinstingl, R. Berger, and E. Gornik, "Surface plasmon enhanced quantum efficiency of metal‐insulator‐semiconductor junctions in the visible," Applied physics letters, vol. 48, pp. 526-528, 1986. [28]E. Economou, "Surface plasmons in thin films," Physical review, vol. 182, p. 539, 1969. [29]K. J. Willis, J. B. Schneider, and S. C. Hagness, "Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD," Optics express, vol. 16, pp. 1903-1914, 2008. [30]R. Adato and J. Guo, "Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers," Journal of Applied Physics, vol. 105, p. 034306, 2009. [31]F. I. Fedorov, "To the theory of total reflectionFedorov F I 1955 To the theory of total reflection Doklady Akademii Nauk SSSR, 105,# 3, 465–8; received 9 December 1949. Presented by academician Lebedev AA on 27 May 1955. Translated by DI Pustakhod 2012," Journal of Optics, vol. 15, p. 014002, 2013. [32]S.-F. Wang, "A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry," Sensors, vol. 9, pp. 2498-2510, 2009. [33]W. M. Ash III, L. Krzewina, and M. K. Kim, "Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy," Applied optics, vol. 48, pp. H144-H152, 2009. [34]W. M. Ash and M. K. Kim, "Digital holography of total internal reflection," Optics express, vol. 16, pp. 9811-9820, 2008. [35]W. M. Ash III and M. K. Kim, "Cellular imagery with total internal reflection holographic microscopy," in SPIE BiOS: Biomedical Optics, 2009, pp. 71820A-71820A-8. [36]A. Noual, A. Akjouj, Y. Pennec, J. Gillet, and B. Djafari-Rouhani, "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, vol. 11, p. 103020, 2009. [37]Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Xiao, et al., "Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes," Journal of Lightwave Technology, vol. 31, pp. 1973-1979, 2013. [38]T.-W. Lee and S. K. Gray, "Remote grating-assisted excitation of narrow-band surface plasmons," Optics express, vol. 18, pp. 23857-23864, 2010. [39]T.-W. Lee and S. K. Gray, "Regenerated surface plasmon polaritons," Applied Physics Letters, vol. 86, p. 141105, 2005. [40]J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Physical Review B, vol. 77, p. 125407, 2008. [41]I. Dolev, M. Volodarsky, G. Porat, and A. Arie, "Multiple coupling of surface plasmons in quasiperiodic gratings," Optics letters, vol. 36, pp. 1584-1586, 2011. [42]J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999. [43]K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, "Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity," Optics express, vol. 16, pp. 18599-18604, 2008. [44]S. Yushanov, L. Gritter, J. Crompton, and K. Koppenhoefer, "Surface plasmon resonance," in COMSOL Conference, 2012. [45]F. Bahrami, J. S. Aitchison, and M. Mojahedi, "Multimode spectroscopy using dielectric grating coupled to a surface plasmon resonance sensor," Optics letters, vol. 39, pp. 3946-3949, 2014. [46]H. Li, C. E. Baum, J. Sun, and B. M. Cullum, "Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection," in Defense and Security Symposium, 2006, pp. 621804-621804-11. [47]C. K. Klutse, A. Mayer, J. Wittkamper, and B. M. Cullum, "Applications of self-assembled monolayers in surface-enhanced Raman scattering," Journal of Nanotechnology, vol. 2012, 2012. [48]M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano letters, vol. 6, pp. 2604-2608, 2006. [49]M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Physical Review Letters, vol. 98, p. 177404, 2007. [50]D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, "Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films," Quantum Electronics, vol. 39, pp. 745-750, 2009. [51]E. Fitrakis, T. Kamalakis, and T. Sphicopoulos, "Slow-light dark solitons in insulator–insulator–metal plasmonic waveguides," JOSA B, vol. 27, pp. 1701-1706, 2010. [52]T. Davis, "Surface plasmon modes in multi-layer thin-films," Optics Communications, vol. 282, pp. 135-140, 2009. [53]A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljačić, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Physical review letters, vol. 95, p. 063901, 2005. [54]H. T. Baltar, E. M. Goldys, and K. Drozdowicz-Tomsia, Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films: INTECH Open Access Publisher, 2012. [55]S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007. [56]P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B, vol. 6, p. 4370, 1972. [57]E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998. [58]D. J. Bergman, "The dielectric constant of a composite material—a problem in classical physics," Physics Reports, vol. 43, pp. 377-407, 1978. [59]Y. J. Yoon and B. Kim, "A new formula for effective dielectric constant in multi-dielectric layer microstrip structure," in Electrical Performance of Electronic Packaging, 2000, IEEE Conference on., 2000, pp. 163-167. [60]M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985. [61]S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Optics letters, vol. 28, pp. 1870-1872, 2003.
|