跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋孟昇
研究生(外文):Meng-Shen Sung
論文名稱:多層膜遠離式光柵系統之表面電漿耦合
論文名稱(外文):Surface Plasmons Coupling in Multilayer Remote-grating System
指導教授:李佳翰李佳翰引用關係
口試委員:林俊宏陳詩雯薛承輝許文翰
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:69
中文關鍵詞:表面電漿子遠離式光柵多層膜波導管感測器
外文關鍵詞:plasmonicsremote gratingmultilayertotal reflectionwaveguidesensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,光通訊傳遞波導管與生物感測器的開發、設計成為關注的議題。我們利用有限時域差分法模擬並設計多層膜之遠離式光柵結構,能量可以藉由全反射共振有效地被激發到兩層介電質間,以達到表面電漿多重窄頻寬共振之效應。使其能擁有多重波長感測器的功效,以及在介電質表面能有效的傳遞表面電漿子,希望這些好處未來能被應到相關領域。我們所提出的結構,藉此探討不同類週期排列與不同介電質膜厚對遠離式光柵的場強效果,且最佳化結構得到最大場強,並探討增強的原因與物理機制。藉由模擬數據分析,我們發現不同介電質膜厚以及不同類週期遠離式光柵的排列為影響共振耦合頻率的兩項重要因素。

Currently, the plasmonic waveguides are able to transmit or to control the optical or electronic signals; the plasmonic device can be used as bio-sensors, both of which have become popular issue. In this research, I simulate and design multilayer remote-grating system by using finite-difference time-domain method. The power flow can perfectly be excited to interface between two dielectric materials by total reflection. Then, it can reach multiple narrow band coupling of surface plasmons, which obtain the functionality of multiple wavelength sensor. SPPs have ability to transmit on the surface of dielectric material with low loss. Hence, I hope that these advantages can be applied to related field in the near future. First, I discuss the relationship between different quasi period arrangements and different thickness of dielectric layer toward the intensity effect of electric field of remote grating system. Afterward, we can get the maxima enhancement by optimizing the parameters as well as investigate the physical mechanism and the reason why I can enhance the electric field intensity. From our simulation analysis, there are two important reason of influencing on coupling frequency that I find different thickness of dielectric layer and different quasi period remote grating arrangements.

致謝 i
中文摘要 ii
ABSTRACT iii
STATEMENT OF CONTRIBUTION iv
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
1.3 Framework of This Thesis 7
Chapter 2 Research Method 8
2.1 Surface Plasmon Polaritons at the Interface of Dielectric and Metal 8
2.2 Multilayer Systems 13
2.3 Simulation Conditions 16
Chapter 3 Simulation Results of Multilayer Quasi-Periodic Remote-grating System 21
3.1 Multilayer Quasi-Periodic of Remote-Grating System with Change of thickness of the top layer and Bar Sizes 21
3.2 Discuss Coupling Position and Different Dielectric Materials 26
3.3 Analysis and Discussion of the Cycle Phenomenon 27
3.4 Different Grating Height and Transmission with Different thickness of the top layer 28
3.5 Analysis and Discussion the Dispersion relation 30
Chapter 4 Conclusions and Future Works 55
4.1 Conclusions 55
4.2 Future Works 56
Appendix 57
REFERENCE 61
VITA 69



[1]J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Reports on progress in physics, vol. 70, p. 1, 2006.
[2]D. Y. Fedyanin and A. V. Arsenin, "Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes," Photonics and Nanostructures-Fundamentals and Applications, vol. 8, pp. 264-272, 2010.
[3]B. H. Cheng, K. J. Chang, Y.-C. Lan, and D. P. Tsai, "Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures," Scientific reports, vol. 5, 2015.
[4]I. M. Mandel, I. Bendoym, Y. U. Jung, A. B. Golovin, and D. T. Crouse, "Dispersion engineering of surface plasmons," Optics express, vol. 21, pp. 31883-31893, 2013.
[5]P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Optics Express, vol. 14, pp. 7063-7072, 2006.
[6]T.-H. Weng, "Multiple Narrow-Band Coupling of Surface Plasmons in Quasi-periodic Remote-grating System," 國立國立臺灣大學碩士論文, 2012.
[7]"Lumerical Solutions, Inc.." https://www.lumerical.com/
[8]J. Zenneck, "Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie," Annalen der Physik, vol. 328, pp. 846-866, 1907.
[9]S. K. Gray, "Theory and modeling of plasmonic structures," The Journal of Physical Chemistry C, vol. 117, pp. 1983-1994, 2012.
[10]W. L. Barnes, "Surface plasmon–polariton length scales: a route to sub-wavelength optics," Journal of optics A: pure and applied optics, vol. 8, p. S87, 2006.
[11]T.-W. Lee and S. Gray, "Subwavelength light bending by metal slit structures," Optics express, vol. 13, pp. 9652-9659, 2005.
[12]D. Y. Fedyanin, A. Arsenin, V. Leiman, and A. Gladun, "Backward waves in planar insulator–metal–insulator waveguide structures," Journal of Optics, vol. 12, p. 015002, 2009.
[13]E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," science, vol. 311, pp. 189-193, 2006.
[14]Y.-H. Chen, J. Li, M.-L. Ren, B.-L. Wang, J.-X. Fu, S.-Y. Liu, et al., "Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces," Applied Physics Letters, vol. 98, p. 261912, 2011.
[15]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[16]R. Oulton, G. Bartal, D. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New Journal of Physics, vol. 10, p. 105018, 2008.
[17]H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56-62, 2007.
[18]P. Berini and I. De Leon, "Surface plasmon-polariton amplifiers and lasers," Nature Photonics, vol. 6, pp. 16-24, 2012.
[19]D. K. Gramotnev, S. J. Tan, and M. L. Kurth, "Plasmon nanofocusing with negative refraction in a high-index dielectric wedge," Plasmonics, vol. 9, pp. 175-184, 2014.
[20]B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Applied physics letters, vol. 90, p. 013114, 2007.
[21]M. Faryad, A. S. Hall, G. D. Barber, T. E. Mallouk, and A. Lakhtakia, "Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material," JOSA B, vol. 29, pp. 704-713, 2012.
[22]R. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, p. 874, 1957.
[23]D. Pines, "Collective energy losses in solids," Reviews of Modern Physics, vol. 28, p. 184, 1956.
[24]E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[25]E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Zeitschrift für Physik, vol. 241, pp. 313-324, 1971.
[26]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[27]K. Berthold, W. Beinstingl, R. Berger, and E. Gornik, "Surface plasmon enhanced quantum efficiency of metal‐insulator‐semiconductor junctions in the visible," Applied physics letters, vol. 48, pp. 526-528, 1986.
[28]E. Economou, "Surface plasmons in thin films," Physical review, vol. 182, p. 539, 1969.
[29]K. J. Willis, J. B. Schneider, and S. C. Hagness, "Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD," Optics express, vol. 16, pp. 1903-1914, 2008.
[30]R. Adato and J. Guo, "Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers," Journal of Applied Physics, vol. 105, p. 034306, 2009.
[31]F. I. Fedorov, "To the theory of total reflectionFedorov F I 1955 To the theory of total reflection Doklady Akademii Nauk SSSR, 105,# 3, 465–8; received 9 December 1949. Presented by academician Lebedev AA on 27 May 1955. Translated by DI Pustakhod 2012," Journal of Optics, vol. 15, p. 014002, 2013.
[32]S.-F. Wang, "A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry," Sensors, vol. 9, pp. 2498-2510, 2009.
[33]W. M. Ash III, L. Krzewina, and M. K. Kim, "Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy," Applied optics, vol. 48, pp. H144-H152, 2009.
[34]W. M. Ash and M. K. Kim, "Digital holography of total internal reflection," Optics express, vol. 16, pp. 9811-9820, 2008.
[35]W. M. Ash III and M. K. Kim, "Cellular imagery with total internal reflection holographic microscopy," in SPIE BiOS: Biomedical Optics, 2009, pp. 71820A-71820A-8.
[36]A. Noual, A. Akjouj, Y. Pennec, J. Gillet, and B. Djafari-Rouhani, "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, vol. 11, p. 103020, 2009.
[37]Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Xiao, et al., "Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes," Journal of Lightwave Technology, vol. 31, pp. 1973-1979, 2013.
[38]T.-W. Lee and S. K. Gray, "Remote grating-assisted excitation of narrow-band surface plasmons," Optics express, vol. 18, pp. 23857-23864, 2010.
[39]T.-W. Lee and S. K. Gray, "Regenerated surface plasmon polaritons," Applied Physics Letters, vol. 86, p. 141105, 2005.
[40]J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Physical Review B, vol. 77, p. 125407, 2008.
[41]I. Dolev, M. Volodarsky, G. Porat, and A. Arie, "Multiple coupling of surface plasmons in quasiperiodic gratings," Optics letters, vol. 36, pp. 1584-1586, 2011.
[42]J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
[43]K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, "Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity," Optics express, vol. 16, pp. 18599-18604, 2008.
[44]S. Yushanov, L. Gritter, J. Crompton, and K. Koppenhoefer, "Surface plasmon resonance," in COMSOL Conference, 2012.
[45]F. Bahrami, J. S. Aitchison, and M. Mojahedi, "Multimode spectroscopy using dielectric grating coupled to a surface plasmon resonance sensor," Optics letters, vol. 39, pp. 3946-3949, 2014.
[46]H. Li, C. E. Baum, J. Sun, and B. M. Cullum, "Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection," in Defense and Security Symposium, 2006, pp. 621804-621804-11.
[47]C. K. Klutse, A. Mayer, J. Wittkamper, and B. M. Cullum, "Applications of self-assembled monolayers in surface-enhanced Raman scattering," Journal of Nanotechnology, vol. 2012, 2012.
[48]M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano letters, vol. 6, pp. 2604-2608, 2006.
[49]M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Physical Review Letters, vol. 98, p. 177404, 2007.
[50]D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, "Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films," Quantum Electronics, vol. 39, pp. 745-750, 2009.
[51]E. Fitrakis, T. Kamalakis, and T. Sphicopoulos, "Slow-light dark solitons in insulator–insulator–metal plasmonic waveguides," JOSA B, vol. 27, pp. 1701-1706, 2010.
[52]T. Davis, "Surface plasmon modes in multi-layer thin-films," Optics Communications, vol. 282, pp. 135-140, 2009.
[53]A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljačić, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Physical review letters, vol. 95, p. 063901, 2005.
[54]H. T. Baltar, E. M. Goldys, and K. Drozdowicz-Tomsia, Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films: INTECH Open Access Publisher, 2012.
[55]S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007.
[56]P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B, vol. 6, p. 4370, 1972.
[57]E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998.
[58]D. J. Bergman, "The dielectric constant of a composite material—a problem in classical physics," Physics Reports, vol. 43, pp. 377-407, 1978.
[59]Y. J. Yoon and B. Kim, "A new formula for effective dielectric constant in multi-dielectric layer microstrip structure," in Electrical Performance of Electronic Packaging, 2000, IEEE Conference on., 2000, pp. 163-167.
[60]M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985.
[61]S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Optics letters, vol. 28, pp. 1870-1872, 2003.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊