跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉冠宏
研究生(外文):Guan-Hong Liou
論文名稱:以前處理台灣赤楊生產木寡糖及乳酸
論文名稱(外文):Xylooligosaccharides and lactic acid production from pretreated Alnus formosana biomass
指導教授:柯淳涵柯淳涵引用關係
指導教授(外文):Chun-Han Ko
口試委員:劉佳振杜鎮
口試委員(外文):Chia-Chen LiuJennTu
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:77
中文關鍵詞:台灣赤楊蒸氣爆碎RT-CaCCO木寡糖膜過濾乳酸
外文關鍵詞:Alnus formosanasteam explosionbeatingRT-CaCCOlactic acidxlooligosaccharids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為以多種方法處理台灣原生種植物台灣赤楊,並製備全纖維素衍生產物。先將台灣赤楊木片分別浸泡於水與1.5% 硫酸96 h,接著放入蒸解槽進行蒸氣爆碎,其處理條件為180oC持溫10 min之後再將水蒸爆生質物進行生石灰法(RT-CaCCO與CaCCO) 的進一步處理,成為數種前處理法之台灣赤楊原料。步驟,包含分為兩部分產物製備: (1) 以NaOH提取台灣赤楊之戊聚糖,經不同步驟純化分離成木聚糖,再經酵素水解成木寡糖。(2) 以不同前處理方法之配合,破壞生質物之化學組成結構,以提高後續水解成葡萄糖與發酵成最終產物乳酸的效率。第一部分將未處理與經過蒸氣爆碎的台灣赤楊進行戊聚糖之萃取,萃取條件為加入生質物重量10倍之12% NaOH 體積,持溫60oC與150 rpm 反應16 h,之後分為酒精沉澱、酒精沉澱混合膜過濾以及單純膜過濾三種純化方法收取木聚糖。1% 木聚糖會以10、50、100 IU/mL 三種酵素劑量進行水解試驗,找出最佳的純化方法、酵素劑量、水解時間。結果發現,僅使用酒精沉澱之木聚糖生成的木寡糖濃度最高,為8.26 mg/mL;最佳酵素劑量則根據不同的條件有不同結果,均為50、100 IU/mL兩種酵素劑量為較佳;最佳水解時間為三天之內。第二部分實驗中,將這些原料進行同時糖化與發酵 (SSF),測定乳酸的產率。結果發現,1.5% 硫酸可有效率的破壞生質物結構,原料在酵素水解四天時產糖量為4.00 g/L,水解效率為53.35%。而SSF實驗中得知四天時乳酸產量為6.22 g/L,在十天時產量為11.51 g/L,其效率為0.048 gL-1h-1。數種前處理對台灣赤楊的利用效率比較為: 稀酸蒸氣爆碎>打漿>生石灰法。

Alnus formosana is a native species of central Taiwan. In order to take good use of the biomass, pretreatments including H2O steam explosion (HSE), 1.5% sulfuric acid steam explosion (ASE), RT-CaCCO (room temperature-calcium capturing by carbonation) and CaCCO (calcium capturing by carbonation) processes, and beating methods are conducted before production of xolooligosacchrides (XOs) and lactic acid production.
In XOs production, untreated and HSE A. formosana were mixed with 12% (w/v) NaOH solution with the liquid / solid ratio of 10. The mixtures were extracted at 150 rpm and 60oC for 16 hr. The mixtures were filtered and the filtrates were adjusted to pH 7 by HCl, and then they were mixed with EtOH and purified by ultrafiltration or nanofiltration. Then xylan was oven dried and conserved. 1% xylan was hydrolyzed by 10, 50, 100 IU/mL of enzymes to produce XOs. Results showed that xylan only conducted by EtOH treatment obtained the highest XOs, with 8.26 mg/mL. There were no significant differences between untreated and HSE A. formosana xylan on XOs production.
In lactic acid production, A. formosana pretreated by steam explosion, lime (RT-CaCCO and CaCCO), and beating methods were conducted by simultaneous hydrolysis and fermentation (SSF) to produce lactic acid. Results showed that A. formosana with 1.5% sulfuric acid steam explosion (ASE) pretreatment obtained the highest glucose concentration 4.00 g/L in enzyme hydrolysis at Day 4, and the efficiency was 53.35%. And SSF of ASE also resulted in the highest lactic acid production, with 6.22 g/L at Day 4 and 11.51 g/L at Day 10, and the productivity was 0.048 gL-1h-1. The impacts of pretreatment efficiencies mentioned above were ASE > beating > lime.

謝誌 i
摘要 ii
Abstract iii
CONTENTS v
FIGURE INDEX vii
TABLE INDEX ix
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 4
2.1 Structure of lignocellulosic biomass 4
2.1.1 Cellulose 5
2.1.2 Hemicelloluse 5
2.1.3 Lignin 7
2.2 Pretreatments of lignocellulosic biomass 8
2.2.1 Steam explosion method 9
2.2.2 Dilute acid hydrolysis method 11
2.2.3 Lime and RT-CaCCO process methods 11
2.3 Enzyme hydrolysis 13
2.3.1 Cellulase 13
2.3.2 Xylanase 14
2.4 Xylooligosaccharides (XOs) 14
2.4.1 Description of oligosaccharides 14
2.4.2 Structures and properties of XOs 17
2.4.3 Applications on XOs 18
2.4.4 XOs production 19
2.5 Lactic acid 20
2.5.1 Description of lactic acid 20
2.5.2 Applications on lactic acid 20
2.5.3 Lactic acid bacteria 21
2.5.4 Lactic acid production 22
2.6 Alnus formosana 24
Chapter 3 Materials and methods 26
3.1 Research framework 26
3.2 Raw material and analysis 26
3.3 Pretreatments of material 27
3.4 Enzyme 28
3.5 Xylan extraction from A. formosana 28
3.6 A. formosana xylan (AX) extraction and purification 28
3.7 Membrane filtration system 30
3.8 XOs hydrolysis from xylan 31
3.9 Lactic acid bacteria (LAB) 31
3.10 Glucose hydrolysis 32
3.11 Lactic acid production by SSF process 32
3.12 Total sugars assay 33
3.13 HPLC analysis of XOs and lactic acid 33
Chapter 4 Results 34
4.1 Chemical compositions of materials 34
4.2 XOs production from AX 35
4.2.1 Desalination and total sugars recovery of EAX 35
4.2.2 Flux change by different membranes filtration 35
4.2.3 Desalination and total sugars recovery of EUAX and NAX 41
4.2.4 HTec hydrolysis of beechwood xylan (BX) and AX 49
4.2.5 Chemical compositions of AX residues and mass balance of AX 60
4.3 Lactic acid production 63
4.3.1 Glucose fermentation of Lb. paracasei paracasei 63
4.3.2 CTec hydrolysis performance and SSF of several substrates 67
Chapter 5 Conclusions 71
Chapter 6 Abbreviation 72
Chapter 7 Reference 73



Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K. 2011. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286-301.
I.E.A. 2004. Biofuels for transport: an international perspective. Paris, France: International Energy Agency.
Aristidou, A., Penttilä, M. 2000. Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11, 187-198.
Beg, Q., Kapoor, M., Mahajan, L., Hoondal, G. 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326-338.
Bhat, M., Bhat, S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583-620.
Buranov, A.U., Mazza, G. 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28, 237-259.
Chang, V.S., Holtzapple, M.T. 2000. Fundamental factors affecting biomass enzymatic reactivity. Twenty-first Symposium on Biotechnology for Fuels and Chemicals, Colorado, USA, Springer. pp. 5-37.
Chang, V.S., Nagwani, M., Holtzapple, M.T. 1998. Lime pretreatment of crop residues bagasse and wheat straw. Applied Biochemistry and Biotechnology, 74, 135-159.
Chum, H.L., Johnson, D.K., Black, S.K., Overend, R.P. 1990. Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology, 24, 1-14.
Dicks, L., Dellaglio, F., Collins, M. 1995. Proposal To Reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 45, 395-397.
Ebringerova, A., Heinze, T. 2000. Xylan and xylan derivatives– biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromolecular Rapid Communications, 21, 542-556.
Fengel, D., Wegener, G. 1984. Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp. 613.
Glenn, G., Roberfroid, M. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125, 1401-1412.
Gupta, B., Revagade, N., Hilborn, J. 2007. Poly (lactic acid) fiber: an overview. Progress in Polymer Science, 32, 455-482.
Harmsen, P., Lips, S., Bakker, R. 2013. Pretreatment of lignocellulose for biotechnological production of lactic acid. Food & Biobased Research, Wageningen, Netherlands. pp. 108.
Hsiao, S.-Y. 2006. Study in production of xylooligosaccharides from rice straw and sugarcane bagasse. in: Department of microbiology and biochemistry, Master''s thesis, National Taiwan University. Taipei.
Hsu, C.-K., Liao, J.-W., Chung, Y.-C., Hsieh, C.-P., Chan, Y.-C. 2004. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. The Journal of Nutrition, 134, 1523-1528.
Johansson, T.B. 1993. Renewable energy: sources for fuels and electricity. Island press, Washington, DC, USA.
Kompanje, E., Jansen, T., van der Hoven, B., Bakker, J. 2007. The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843. Intensive Care Medicine, 33, 1967-1971.
Kootstra, A.M.J., Beeftink, H.H., Scott, E.L., Sanders, J.P. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126-131.
Kumar, G.P., Pushpa, A., Prabha, H. 2012. A review on xylooligosaccharides. International Research Journal of Phamacy, 3, 71-74.
Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L. 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 101, 1036-1043.
Lee, M.-K., Tsai, W.-T., Tsai, Y.-L., Lin, S.-H. 2010. Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 88, 110-116.
Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506-577.
McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37-46.
McMillan, J.D., 1994. Pretreatment of lignocellulosic biomass. In: Himmel, M.E., Baker, J.O., Overend, R.P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, USA, pp. 292–324.
Moniruzzaman, M. 1996. Saccharification and alcohol fermentation of steam-exploded rice straw. Bioresource Technology, 55, 111-117.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673-686.
Mussatto, S.I., Mancilha, I.M. 2007. Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587-597.
Mussatto, S.I., Teixeira, J. 2010. Lignocellulose as raw material in fermentation processes. Current research technology and microbial biotechnology, 2, 897-907.
Ramos, L.P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova, 26, 863-871.
Ratanakhanokchai, K., Waeonukul, R., Pason, P., Aachaapaikoon, C., Kyu, K.L., Sakka, K., Kosugi, A., Mori, Y. 2013. Paenibacillus curdlanolyticus Strain B-6 multienzyme complex: A novel system for biomass utilization. Biomass Now-Cultivation and Utilization. InTech, Rijeka, Croatia, pp. 369-394.
Roy, P., Tokuyasu, K., Orikasa, T., Nakamura, N., Shiina, T. 2012. A techno-economic and environmental evaluation of the life cycle of bioethanol produced from rice straw by RT-CaCCO process. Biomass and Bioenergy, 37, 188-195.
Sako, T., Matsumoto, K., Tanaka, R. 1999. Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal, 9, 69-80.
Shiroma, R., Park, J.-Y., Al-Haq, M.I., Arakane, M., Ike, M., Tokuyasu, K. 2011. RT-CaCCO process: an improved CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature. Bioresource Technology, 102, 2943-2949.
Sonomoto, K., Yokota, A. 2011. Lactic acid bacteria and bifidobacteria: current progress in advanced research, Caister Academic Press, Norwich, UK.
Twidell, J., Weir, T. 2015. Renewable energy resources, London, UK. pp.324-387.
Vazquez, M., Alonso, J., Domınguez, H., Parajo, J. 2000. Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11, 387-393.
Voragen, A.G. 1998. Technological aspects of functional food-related carbohydrates. Trends in Food Science and Technology, 9, 328-335.
Yang, G.-Y. 2011. Purification of xylooligosachharides from steam-explosion liquor of napiergrass. in: Department of molecular science and engineering, Master''s thesis, National Taipei University of Technology. Taipei.
Yin, P., Nishina, N., Kosakai, Y., Yahiro, K., Pakr, Y., Okabe, M. 1997. Enhanced production of L (+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. Journal of Fermentation and Bioengineering, 84, 249-253.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Garde, A., Jonsson, G., Schmidt, A.S., Ahring, B.K. 2002. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresource Technology, 81, 217-223.
Hujanen, M., Linko, Y.-Y. 1996. Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Applied Microbiology and Biotechnology, 45, 307-313.
Wee, Y. J., Yun, J.-S., Park, D.-H., Ryu, H.-W. 2004. Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnology and Bioprocess Engineering, 9, 303-308.
Lai, Y. -C. 2011. Part 1 Studies on the Metabolism of Dicentrine in Lan-Yu Miniature Pigs Part 2 Studies on the Anti-inflammatory Constituents of the Leaves of Alnus formosana (II) Part 3 Studies on the Chemical Constituents of Fagus hayatae Palib. ex Hayata Part 4 Studies on the Chemical Constituents of Dendropanax dentiger (Harms ex Diels) Merr. in: College of Medicine, PhD Thesis, National Taiwan University, pp.52.
Liu, Y. -C., Lu, F. -Y., Ou, C. -H. 1988. Trees of Taiwan. Monographic publication, pp.925.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top