跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂凱珮
研究生(外文):Hoi-Pui Lui
論文名稱:常見樹木腐朽菌的鑑定及防治之研究
論文名稱(外文):Identification and control of wood rot fungi on common trees
指導教授:孫岩章孫岩章引用關係
指導教授(外文):En-Jang Sun
口試委員:郭章信張東柱洪挺軒
口試委員(外文):Chang-Hsin KuoTun-tschu ChangTing-Hsuan Hung
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:木材腐朽菌化學防治木材腐朽能力測定傷口保護劑
外文關鍵詞:wood decay fungichemical controlwood decay enzymetree wound protectant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
城市中之樹木常可見易受到木材腐朽菌(wood decay fungi)的感染,造成樹木木材腐化、空洞或斷裂,嚴重者更會導致全株倒伏,影響公共安全。本研究主要於台灣北部地區調查腐朽樹木及分離木材腐朽菌,共選出六種木材腐朽菌進行鑑定。鑑定結果得知,六菌株分別是Ganoderma weberianum、Ganoderma gibbosum、Phlebiopsis ravenelii、Leiotrametes lactinea、Hydnochaete japonicaz及一不確定者。測試此六個腐朽菌株分泌分解酵素之能力,結果顯示,六個木材腐朽菌株皆有分泌纖維素分解酵素及木質素分解酵素之能力,證明六菌株都為白腐菌。而其中以DW04菌株(Phlebiopsis ravenelii)及OG12菌株(Ganoderma weberianum)所分泌的分解纖維酵素之活性最強;而分泌之漆化酵素之能力以OG12菌株(Ganoderma weberianum)和OG03菌株(Ganoderma gibbosum)最高。為迅速了解六菌株之腐朽速度及能力,對其進行簡易木片腐朽測試,使用2種不同尺寸之松木片,發現以DW04菌株(Phlebiopsis ravenelii)之腐朽能力最強,DW06菌株(Hydnochaete japonica)最弱。利用瓊脂稀釋平板法法,將14種殺菌劑添加於馬鈴薯葡萄糖瓊脂培養基(potato dextrose agar, PDA),測定不同濃度之殺菌劑對腐朽菌的抑制效果。發現菲克利、待克利、普克利及得克利都有良好之抑制效果。進一步以木片進行殺菌劑對菌株之抑制能力試驗中,結果顯示待克利對韋伯靈芝有較佳之抑制效果,菲克利對南方靈芝有良好之抑制能力。而在樹木腐朽菌藥劑防治劑型之試驗中,以三年生之小葉欖仁和阿勃勒苗木作為試驗材料,在只接菌之對照組中,分離率皆為100%,而在阿勃勒苗木之處理,待普克利與AB膠混合劑之抑制木材腐朽菌之效果最佳;在小葉欖仁苗木之處理,待普克利與水泥漆混合劑和待普克利與凡士林混合劑對於抑制木材腐朽菌之效果最好。

Urban trees were frequently infected by wood decay fungi and caused wood rot, wound and cracking. Thus make them easily to fall down after strong wind and threaten the public safety. This study is aimed to survey the rotten trees in northern Taiwan, collect the wood decay samples, and isolate the wood decay fungi from infected trees. A total of six of wood decay fungi were identified in this study. They are Ganoderma weberianum, Ganoderma gibbosum, Phlebiopsis ravenelii, Leiotrametes lactinea, Hydnochaete japonicaz and one uncertain isolate. They were tested for their capability for producing the decomposition enzymes for cellulose and lignin. Results showed that all six fungi can produce cellulase and laccase enzyme that belong to the lignin decomposition enzyme. Among the six fungi, DW04 (Phlebiopsis ravenelii) and OG12 (Ganoderma weberianum ) showed the highest yield of cellulose, while OG12 (Ganoderma weberianum ) and OG03 (Ganoderma gibbosum ) produce the highest level of laccase enzyme. To test the wood-decaying capability, we develop a wood disc method, using 2 size of pine wood disc. Results showed that among them the DW04 (Phlebiopsis ravenelii) showed the fastest decaying speed, while the DW06 (Hydnochaete japonicaz ) showed the least capability. The dilution plate method was used to screen 14 fungicides for their inhibiting potential against the six wood decay fungi at different concentrations on PDA. Results showed that Hexaconazole, Difenoconazole, Propiconazole and Tebuconazole have higher inhibitory effect than the others. The further test on wood discs treated with fungicide showed that Difenoconazole has better inhibiting effect on Ganoderma weberianum, while Hexaconazole has a good effect on Ganoderma gibbosum. In the test of tree wound protecting agents for trees, two species (Terminalia mantalyi and Cassia fistula)of tree with age of 3 years were selected and tested. The wound were brushed with wood decay fungi, then pasted with glue materials added with Difenoconazole + Propiconazole. The reisolation rate of wood decay fungi from inoculated wounds were higher than those pasted with the Difenoconazole + Propiconazole agent. In the Cassia fistula experiment, the Difenoconazole + Propiconazole and AB glue mixture showed the best protection result. While in the Terminalia mantalyi experiment, the Difenoconazole + Propiconazole and Cement or Vaseline mixture showed the better results.

目錄
口試委員會審定書 I
誌謝 II
中文摘要 IV
Abstract V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 前言 1
第二章 前人研究 3
一、木材腐朽菌之簡介 3
(一) 大白栓菌 (Leiotrametes lactinea) 4
(二) 韋伯靈芝 (Ganoderma weberianum) 4
(三) 南方靈芝 (Ganoderma gibbosum) 4
(四) 粉紅隔孢伏革菌 (Phlebiopsis ravenelii) 5
(五) 日本銹齒革菌 (Hydnochaete japonica) 5
二、木材腐朽菌之種類 5
(一) 褐腐菌 5
(二) 白腐菌 5
三、木材腐朽菌之鑑定 6
四、木材腐朽菌之研究 7
(一) 木材腐朽菌之防治法 7
(二) 傷口保護 8
(三) 木材腐朽菌分泌酵素 9
第三章 材料與方法 10
一、臺灣北部常見樹木腐朽病害之田間調查 10
二、常見樹木木材腐朽菌之分離及初步鑑定 10
三、木材腐朽菌之分泌酵素能力之測試 11
(一) 纖維素分解酵素(amylase) 11
(二) 木質分解酵素 (laccase) 12
四、常見樹木木材腐朽菌之鑑定 12
(一) 形態學之鑑定 12
(二) 分子生物學之鑑定 13
五、常見樹木腐朽菌之腐朽能力測試 13
(一) 簡易之木材腐朽能力測試 14
(二) 不同寄主間病原菌腐朽能力之比較 14
六、常見樹木腐朽菌藥劑防治之篩選及測試 15
(一) 化學藥劑固態瓊脂稀釋平板法(Agar dilution method)之篩選 15
(二) 化學藥劑上對6種木材腐朽菌之防治能力測試 15
七、樹木腐朽菌藥劑防治劑型之研究 16
第四章 結果 17
一、臺灣北部常見樹木腐朽病害之田間調查 17
二、常見樹木木材腐朽菌之分離及初步鑑定 18
三、木材腐朽菌之分泌酵素能力之測試 20
(一) 纖維素分解酵素 20
(二) 木質分解酵素 23
四、常見樹木木材腐朽菌之鑑定 25
(一) 形態學之鑑定 25
(二) 分子生物學之鑑定 33
五、常見樹木腐朽菌之腐朽能力測試 40
(一) 簡易之木材腐朽能力測試 40
(二) 不同寄主間病原菌腐朽能力之比較 42
六、常見樹木腐朽菌藥劑防治之篩選及測試 45
(一) 化學藥劑固態瓊脂稀釋平板法(Agar dilution method)之篩選 45
(二) 化學藥劑在木片上對6種木材腐朽菌之防治能力測試 60
七、樹木腐朽菌藥劑防治劑型之研究 70
第五章 討論 73
一、 臺灣北部常見樹木腐朽病害之田間調查 73
二、常見樹木木材腐朽菌之分離及初步鑑定 73
三、木材腐朽菌之分泌酵素能力之測試 74
四、常見樹木木材腐朽菌之鑑定 75
五、常見樹木腐朽菌之腐朽能力測試 76
六、常見樹木腐朽菌藥劑防治之篩選及測試 77
七、樹木腐朽菌藥劑防治劑型之研究 78
參考文獻 79



參考文獻
1.王立海、孫天用,2011。木材腐朽檢測及防治的研究進展。黑龍江大學工程學報。
2.吳佳哲、張惠婷,2006。烏心石抽出成分之抗腐朽菌活性評估。中華林學季刊 39,547-555。
3.林介龍、蔡景株、蔡佳彬、傅春旭,2009。危害珍貴老樹之木材腐朽菌調查與研究。行政院農業委員會林務局。
4.林群雅,2008。桂皮醛應用為天然木材防腐劑之潛力評估。國立國立臺灣大學森林環境暨資源學研究所碩士論文。
5.邱志明、林振榮、唐盛林、湯適謙、羅卓振南,2004。不同藥劑塗布對櫸木修枝傷口變色與腐朽之效應。臺灣林業科學 19,177-186。
6.周慧明、金重為、尤紀雪,1991。木材防腐。北京中國林業出版社, 23-69 。
7.袁海生、孫向前、劉義,2006。中國鏽革孔菌科一新記錄種。林業科學研究 19,669-671。
8.張東柱,2010。真菌性樹木病害之鑑定診斷與防治原則。林業研究專訊 17,31-34。
9.張東柱、周文能、王也珍、朱宇敏,2001。大自然的魔法師:臺灣大型真菌。行政院農業委員會。
10.許富蘭,2009。抗氧化劑及金屬螯合劑對木材耐腐朽性之影響。國立國立臺灣大學森林環境暨資源學研究所博士論文。
11.許瑞祥,1990。靈芝屬菌株鑑定系統之研究。國立國立臺灣大學農業化學研究所博士論文。

12.陳克恭,2006。木材防腐藥劑成分對木材真菌之抑制效能。國立國立臺灣大學森林環境暨資源學研究所碩士論文。
13.傅昭憲,1991。台灣三種靈芝菌之培養性狀、病原性與腐朽之研究。國立國立臺灣大學森林學研究所碩士論文。
14.傳春旭、張東柱,1999。老樹木材腐朽菌圖鑑。行政院農業委員會林務局。
15.曾詩涵,2010。大礁溪實驗林場疏伐木初期木棲真菌調查。國立宜蘭大學森林暨自然資源學系碩士論文。
16.蔡志濃、安寶貞、謝文瑞 2005。抑制褐根病菌、白紋羽菌及南方靈芝菌之化學藥劑篩選。植物病理學會刊 14,115-124。
17.蔡志濃、鄭秀芳、蔡惠玲、黃鴻章、謝文瑞、安寶貞,2013。利用薄膜培養基法檢測褐根病菌分泌之生體外分解酵素。台灣農業研究 62,184-94。
18.戴意仁,2005。靈芝屬漆氧化酶基因選殖、分類與異源表現。國立國立臺灣大學微生物與生化學研究所碩士論文。
19.Blanchette RA, 1991. Delignification by wood-decay fungi. Annual Review of Phytopathology 29, 381–398.
20.Chang T-T, 1995. A selective medium for Phellinus noxins. European Journal of Forest Pathology 25, 185–190.
21.Chang T-T, Wu M-L, Fu C-H, Fu C-H, 2002. Survival of Four Ganoderma Species and Several Wood inhabiting Fungi in Different Soil Matrix Potentials. Taiwan Journal of Forest Science 17: 143-153.
22.Cheng S-S, Liu J-Y, Chang E-H, Chang S-T, 2008. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technology 99, 5145-5149.
23.Cowling EB, 1961. Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. US DeptAgricult Tech Bull 1258, 1–75.
24.Dai Y-C, 2010. Hymenochaetaceae (Basidiomycota) in China. Fungal Diversity 45, 131-343.
25.Deflorio G, Johnson C, Fink S, Schwarze FWMR, 2008. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. Forest Ecology and Management 255, 2373-2383.
26.DesRochers, P. and G. B. Ouellette,1994.Phaeotheca dimorphospora sp. nov.: description et caractéristiques culturales. Can. J. Bot. 72, 808-817.
27.Dujesiefken D, Liese W, Shortle W, Minocha R, 2005. Response of beech and oaks to wounds made at different times of the year. European Journal of Forest Research 124, 113-7.
28.Gallagher P, Sydnor T, 1983. Promotion of wound closure in shade trees with exogenously-applied growth regulators. Journal of Arboriculture 9, 229-232.
29.Gilman EF, 2002. An illustrated guide to Pruning (2nd ed.). New York: Delmar.
30.Guglielmo F, Bergemann S, Gonthier P, Nicolotti G, Garbelotto M, 2007. A multiplex PCR‐based method for the detection and early identification of wood rotting fungi in standing trees. Journal of Applied Microbiology 103, 1490-507.
31.Hankin L, Anagnostakis SL, 1975. The Use of Solid Media for Detection of Enzyme Production by Fungi. Mycologia 67, 597-607.
32.Hankin L, Anagnostakis SL, 1977. Solid Media Containing Carboxymethylcellulose to Detect CX Cellulase Activity of Micro-organisms. Journal of General Microbiology 98, 109-115.
33.Hartman JR, Pirone TP and Sall MA, 2000. Pirone''s Tree Maintenance (7th ed.). New York: Oxford University Press.
34.Haygreen JG, Bowyer JL, 1996. Forest Products and Wood Science (3rd ed.). US: Edition Iowa State University Press
35.Hawley LF, Fleck LC, Richards CA ,1924.The relation between natural durability and chemical composition in wood. Ind Eng Chem 16, 699–706
36.Jayasuriya K, Thennakoon B, 2007. Biological control of Rigidoporus microporus, the cause of white root disease in rubber. Ceyon Journal of Science (Biology and cience) 36, 9-16.
37.Johannesson H, Stenlid J, 1999. Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. Forest Ecology and Management 115, 203–211
38.Kaewchai S, Lin FC, Wang HK, Soytong K, 2010. Characterization of Rigidoporus microporus isolated from rubber trees based on morphology and ITS sequencing. International Journal of Agricultural Technology 6, 289-298.
39.Kucera LJ, Niemz P, 1998. Fäule in Bäumen erkennen. Wald Holz 2, 27–30.
40.Wood, T. M, 1985 Properties of cellulolytic enzyme systems. Biochemical Society Transactions 13:407-410.
41.Lee K-H, Lee K-J, 2010. Effects of Wound Dressing with Thiophanate-Methyl Paste on Compartmentalization of Pruning Wounds. Journal of Korean Forest Society 99, 220-5.
42.Lesar B, Humar M, 2011. Use of wax emulsions for improvement of wood durability and sorption properties. European Journal of Wood and Wood Products 69, 231-8.
43.Luana G, Fabiano S, Fabio G, Paolo G, 2015. Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi. Forestry 0, 1-6.
44.Neely D, 1970. Healing of wounds on trees. Journal of the American Society for Horticultural Science 95: 536-540.
45.Nicolotti G, Gonthier P, Guglielmo F, 2010. Advances in Detection and Identificationof Wood Rotting Fungi in Timber and Standing Trees. In Gherbawy Y, Voigt K (Eds). Molecular Identification of Fungi, 251-276. Heidelberg, Dordrecht, London, New York: Springer.
46.Niku-Paavola ML, Raaska L, Itävaara M, 1990. Detection of white-rot fungi by a non-toxic stain. Mycological Research 94, 27-31.
47.Potyralska A, Schmidt O, Moreth U, Łakomy P, Siwecki R, 2002. rDNA-ITS sequence of Armillaria species and a specific primerfor A. mellea. Genet 9,119–123
48.Rayner ADM, Boddy L, 1988. Fungal Decomposition of Wood: Its Biology and Ecology. Chichester: John Wiley International.
49.Schmidt O, 2006. Wood and Tree Fungi: Biology, Damage, Protection, and Use. Berlin: Springer.
50.Schmidt O, 2009. Molecular identification and characterization of indoor wood-decay fungi. In: Gherbawy Y, Mach RL, Rai MK (Eds). Current advances in molecular mycology, 333–348. Hauppage: Nova Science Publishers.
51.Schmidt O, Huckfeldt T, 2011. Characterization and identification ofindoor wood-decaying basidiomycetes. In: Adan OCG, SamsonRA (Eds). Fundamentals of molds growth in indoor environmentsand strategies for healthy living, 117–126. Wageningen: Wageningen Acad Pub.
52.Schmidt O, Gaiser O, Dujesiefken D, 2012. Molecular identification of decay fungi in the wood of urban trees. European Journal of Forest Research 131, 885-891.
53.Schubert M, Fink S, Schwarze FWMR, 2008. Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biological Control 45, 111-123.
54.Shigo AL, Wilson CL, 1977. Wound dressings on red maple and American elm: effectiveness after five years. Journal of Arboriculture 5, 81-87.
55.Stalpers JA ,1978. Identification of wood-inhabiting aphyllophorales in pure culture. Studies Mycology 16. CBS, Barn
56.Tucker EJB, Bruce A, Staines HJ, 1997. Biodegradation of Wood Application of modified international wood preservative chemical testing standards for assessment of biocontrol treatments. International Biodeterioration & Biodegradation 39, 189-197.
57.Tzean S-S, Hsieh W-H, Chang T-T, Wu S-H, 2005. Fungal Flora of Taiwan(1st ed., Vol. 3, pp.13-14). Taipei: National Science Council.
58.Wang S-Y, Chen P-F, Chang S-T, 2005. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology 96, 813-818.
59.Zabel RA, Morrell JJ, 1992. Natural Decay Resistance. In Zabel, Morrell JJ (Eds). Wood Microbiology: Decay and its Preservation, 400-411. San Diego: Academic Press.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top