跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂官杰
研究生(外文):Kuan-Chieh Leu
論文名稱:阿拉伯芥參與細胞核及粒線體RNA代謝基因之機制研究
論文名稱(外文):Mechanistic Study of Arabidopsis Genes in Nuclear and Mitochondrial RNA Metabolism
指導教授:趙光裕趙光裕引用關係謝旭亮
指導教授(外文):Guang-Yuh JauhHsu-Liang Hsieh
口試委員:吳素幸邱子珍謝明勳
口試委員(外文):Shu-Hsing WuTzyy-Jen ChiouMing-Hsiun Hsieh
口試日期:2016-05-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:100
中文關鍵詞:RNA代謝粒線體RNA加工RNA編輯阿拉伯芥
外文關鍵詞:PPRCstF64RNA editingRNA processingPolyadenylationArabidopsis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
長久以來RNA被認為是連結遺傳資訊DNA及最終蛋白質產物之間的關鍵分子;而隨著日益精進的研究,訊息RNA在轉譯成蛋白質之前仍可藉由後轉錄修飾作用,進而創造許多不同的成熟訊息RNA且豐富了所轉譯出蛋白質的多樣性。在真核生物中,細胞核的RNA代謝主要有以下調控方式:轉錄、RNA剪接、5’端修飾、3’端加工及多聚腺苷酸化;但在真核生物細胞的胞器中,則具有其它特殊的RNA代謝作用包含了:3’端及5’端的加工及RNA的編輯作用。因此,此論文便以不同的研究方法與角度,去探討兩個分別參與細胞核內與粒線體內RNA代謝的基因,是如何去影響RNA表現,並進一步控制植物生長發育的過程。
論文第一部份是探討一個阿拉伯芥中特殊的P型PPR (Pentatricopeptide repeat)蛋白質PPME (P-type PPR modulating editing)。當T-DNA突變株破壞了PPME的基因功能時會導致ppme突變株的植物生長遲緩、植株矮小及產生形狀皺縮及低萌芽能力的種子。不同於其它阿拉伯芥中的P型PPR蛋白質僅參與的胞器內mRNA加工作用,ppme突變失去了粒線體內nad1基因上898及937位置的RNA編輯效果,並造成粒線體呼吸傳遞鍊的活性損壞。在此研究中我們首次發現阿拉伯芥P型PPR蛋白質參與了RNA編輯作用的調控。
第二部份是探討阿拉伯芥另一個位於細胞核參與mRNA代謝/3’端多聚腺苷酸化的關鍵蛋白質CstF64。在mRNA成熟過程中,3’端修飾作用是使mRNA成熟的關鍵步驟。當CstF64發生突變時會導致植物無法存活;而在較弱的cstf64突變株呈現許多生長發育的缺陷,例如不正常的葉型發育及晚開花的現象等。後續分析了cstf64-1突變株的RNA圖譜,發現了許多長短不一的成熟mRNA存在於細胞中,顯示CstF64可能參與mRNA3’端修飾作用的調節。之後分析中,我們發現了mRNA上所存在的CstF64所對應的鍵結序列(cis-element)AAG/NAAA,且該序列與cstf64-1突變株中造成長短不一mRNA性狀的基因群緊密相關;我們推論CstF64的功能可能是與真正poly(A)訊號附近的其他的AAG/NAAA結合,使參與mRNA3’端poly(A) 修飾作用的複合體蛋白質能辨認真正的poly(A)訊號,以在正確的位置完成poly(A) 修飾作用產生正常的mRNA分子。


RNA is the major functional molecule that connecting the genetics information (DNA) and the final product (protein). There are many post-transcriptional modifications on mRNAs before translation and are important to generate the complexities of proteins. The RNA metabolisms in eukaryotes include transcription, RNA splicing, 5’ capping, 3’ processing, and polyadenylation in the nuclear genome. On the other hand, there are other unique RNA metabolic processes such as 5’ and 3’ end processing, and RNA editing in plant organelles genomes. How these metabolic processes are controlled is the critical question in RNA studies.
In the first portion of this dissertation, the biological and molecular functions of Arabidopsis P-type PPR protein, PPME, were addressed. The null T-DNA mutant of ppme exhibited severe developmental defects, including retarded seedling growth, draft, seed abortion, shriveled seeds, and reduced seed viabilities. Besides, the RNA editing of mitochondrial nad1-898 and nad-937 was lost, leading to amino-acid shifts within NAD1 protein that resulted in the reduced complex I activity in the ppme mutant. Different from other P-type PPR members, the P-type PPR protein, PPME, was the first identified that functioned as an editing factor to modulate RNA editing in the mitochondrial nad1 transcripts and was important for plant development.
In the second part of this dissertation, the important processing factor, Arabidopsis CstF64 in the nucleus, was studied. The cstf64 T-DNA insertional mutants are defective in post-embryonic development. Interestingly, there are many genes exhibited variable mRNA 3’ end length in the cstf64-1 knockdown mutant in our RNA-sequencing profile and the specific cis-elements AAG/NAAA was isolated from those genes showing variable mRNA 3’ end lengths in the cstf64-1 mutant. This AAG/NAAA motifs were randomly distributed within the regions nearby poly(A) sites in those genes with variable mRNA 3’ end length. Therefore, we speculate that Arabidopsis CstF64 may serve as barriers to block non-specific poly(A) signal usages by directly binding to the AAG/NAAA variants during transcription, and this mechanism was different from those in mammals and important for other trans-factors to recognize the major poly(A) signal.


口試委員會審定書………………………………………………………………….. i
謝辭…………………………………………………………………………………... ii
中文摘要…………………………………………………………………………….. iii
英文摘要……………………………………………………………………………. v
List of Figures and Tables …………………………………………………………… viii

Chapter 1. Introduction and Background……………………………………………... 1
Chapter 2. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing…………………… 10
2.1 Abstract
2.2 Introduction
2.3 Materials and Methods
2.4 Results
2.5 Discussion
Chapter 3. The role of Arabidopsis CstF64, in Novel mRNA Polyadenylation Machinery…………………………………………………………………..………. 56
3.1 Abstract
3.2 Introduction
3.3 Materials and Methods
3.4 Results
3.5 Discussion
Chapter 4. Conclusions…………………………………………………………….. 89
References………………………………………………………………………….. 91



Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133-140
Babot M, Birch A, Labarbuta P, Galkin A (2014) Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta 1837: 1083-1092
Bai Y, Auperin TC, Chou C-Y, Chang G-G, Manley JL, Tong L (2007) Crystal structure of murine CsfF-77: Dimeric Association and implications for polyadenylation of mRNA precursors. Molecular Cell 25: 863-875
Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34: W369-W373
Barabino SML, Hubner W, Jenny A, MinvielleSebastia L, Keller W (1997) The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes & Development 11: 1703-1716
Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. Plos Genetics 8: e1002910
Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65: 415-442
Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A (2008) The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Molecular and Cellular Biology 28: 5337-5347
Belostotsky DA, Rose AB (2005) Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. Trends Plant Sci 10: 347-353
Bentolila S, Heller WP, Sun T, Babina AM, Friso G, van Wijk KJ, Hanson MR (2012) RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci U S A 109: E1453-1461
Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 9: e1003584
Binder S, Brennicke A (2003) Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos Trans R Soc Lond B Biol Sci 358: 181-188; discussion 188-189
Binder S, Stoll K, Stoll B (2013) P-class pentatricopeptide repeat proteins are required for efficient 5 '' end formation of plant mitochondrial transcripts. RNA Biology 10: 1511-1519
Boussardon C, Salone V, Avon A, Berthome R, Hammani K, Okuda K, Shikanai T, Small I, Lurin C (2012) Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids. Plant Cell 24: 3684-3694
Brown KM, Gilmartin GM (2003) A mechanism for the regulation of pre-mRNA 3 '' processing by human cleavage factor I-m. Molecular Cell 12: 1467-1476
Buratowski S (2005) Connections between mRNA 3 '' end processing and transcription termination. Current Opinion in Cell Biology 17: 257-261
Burger G, Gray MW, Franz Lang B (2003) Mitochondrial genomes: anything goes. Trends in Genetics 19: 709-716
Calvo O, Manley JL (2001) Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Molecular Cell 7: 1013-1023
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, III, Ule J, Manley JL, Shi Y (2014) CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3 '' processing. Genes & Development 28: 2370-2380
Chateigner-Boutin A-L, des Francs-Small CC, Fujii S, Okuda K, Tanz SK, Small I (2013) The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing. Plant Journal 74: 935-945
Chateigner-Boutin A-L, Small I (2014) Plant RNA editing. RNA Biology 7: 213-219
Chateigner-Boutin AL, Small I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35: e114
de Longevialle AF, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19: 3256-3265
de Longevialle AF, Small ID, Lurin C (2010) Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles. Mol Plant 3: 691-705
des Francs-Small CC, de Longevialle AF, Li Y, Lowe E, Tanz SK, Smith C, Bevan MW, Small I (2014) The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial complex I. Plant Physiology 165: 1409-1416
Di Giammartino DC, Manley JL (2014) New Links between mRNA Polyadenylation and Diverse Nuclear Pathways. Molecules and Cells 37: 644-649
Dominski Z, Yang XC, Purdy M, Wagner EJ, Marzluff WF (2005) A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Molecular and Cellular Biology 25: 1489-1500
Doniwa Y, Ueda M, Ueta M, Wada A, Kadowaki K, Tsutsumi N (2010) The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene 454: 39-46
Edmonds M (2002) A history of poly A sequences: From formation to factors to function. Progress in Nucleic Acid Research and Molecular Biology, Vol 71 71: 285-389
Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191: 37-47
Gaston KW, Limbach PA (2014) The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. Rna Biology 11: 1568-1585
Gorman GS, Blakely EL, Hornig-Do H-T, Tuppen HAL, Greaves LC, He L, Baker A, Falkous G, Newman J, Trenell MI, Lecky B, Petty RK, Turnbull DM, McFarland R, Taylor RW (2015) Novel MTND1 mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clinical Science 128: 895-904
Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283: 1476-1481
Haili N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, Colas des Francs-Small C, Vrielynck N, Mireau H (2013) The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucleic Acids Res 41: 6650-6663
Hammani K, Giege P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19: 380-389
Hockert JA, Yeh H-J, MacDonald CC (2010) The Hinge Domain of the Cleavage Stimulation Factor Protein CstF-64 Is Essential for CstF-77 Interaction, Nuclear Localization, and Polyadenylation. Journal of Biological Chemistry 285: 695-704
Hsieh WY, Liao JC, Chang C, Harrison T, Boucher C, Hsieh MH (2015) The SLOW GROWTH3 pentatricopeptide repeat protein is required for the splicing of mitochondrial NADH Dehydrogenase Subunit7 intron 2 in Arabidopsis. Plant Physiol 168: 490-501
Hsu YW, Wang HJ, Hsieh MH, Hsieh HL, Jauh GY (2014) Arabidopsis mTERF15 Is required for mitochondrial nad2 Intron 3 splicing and functional complex I activity. Plos One 9: e112360
Hunt AG (2014) The Arabidopsis polyadenylation factor subunit CPSF30 as conceptual link between mRNA polyadenylation and cellular signaling. Curr Opin Plant Biol 21: 128-132
Jarvelin AI, Noerenberg M, Davis I, Castello A (2016) The new (dis)order in RNA regulation. Cell Commun Signal 14: 9
Kaneko S, Rozenblatt-Rosen O, Meyerson M, Manley JL (2007) The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3 '' processing and transcription termination. Genes & Development 21: 1779-1789
Karpenahalli MR, Lupas AN, Soeding J (2007) TPRpred: a tool for prediction of TPR-, PPR- and SELI-like repeats from protein sequences. Bmc Bioinformatics 8: 2
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W (2004) Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. Embo Journal 23: 616-626
Keren I, Bezawork-Geleta A, Kolton M, Maayan I, Belausov E, Levy M, Mett A, Gidoni D, Shaya F, Ostersetzer-Biran O (2009) AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15: 2299-2311
Keren I, Tal L, des Francs-Small CC, Araujo WL, Shevtsov S, Shaya F, Fernie AR, Small I, Ostersetzer-Biran O (2012) nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. Plant J 71: 413-426
Khrouchtchova A, Monde R-A, Barkan A (2012) A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA 18: 1197-1209
Kim M, Lee U, Small I, des Francs-Small CC, Vierling E (2012) Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24: 3349-3365
Kobayashi K, Kawabata M, Hisano K, Kazama T, Matsuoka K, Sugita M, Nakamura T (2012) Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein. Nucleic Acids Research 40: 2712-2723
Koprivova A, des Francs-Small CC, Calder G, Mugford ST, Tanz S, Lee BR, Zechmann B, Small I, Kopriva S (2010) Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. J Biol Chem 285: 32192-32199
Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433: 326-330
Kuhn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J (2011) The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. Plant J 67: 1067-1080
Lackford B, Yao CG, Charles GM, Weng LJ, Zheng XF, Choi EA, Xie XH, Wan J, Xing Y, Freudenberg JM, Yang PY, Jothi R, Hu G, Shi YS (2014) Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. Embo Journal 33: 878-889
Liere K, Weihe A, Borner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168: 1345-1360
Lightfoot HL, Hall J (2014) Endogenous polyamine function-the RNA perspective. Nucleic Acids Research 42: 11275-11290
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3'' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327: 94-97
Liu Y-J, Xiu Z-H, Meeley R, Tan B-C (2013) Empty Pericarp5 encodes a Pentatricopeptide Repeat protein that Is required for mitochondrial RNA editing and seed development in Maize. Plant Cell 25: 868-883
Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ (2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiology 138: 1457-1468
Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16: 2089-2103
Lutz CS (2008) Alternative Polyadenylation: A Twist on mRNA 3 '' End Formation. Acs Chemical Biology 3: 609-617
Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3''-end processing. Cellular and Molecular Life Sciences 65: 1099-1122
Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L (2006) Polyadenylation factor CPSF-73 is the pre-mRNA 3 ''-end-processing endonuclease. Nature 444: 953-956
Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113: 93-99
Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome-wide analysis of pre-mRNA 3'' end processing reveals a decisive role of human cleavage factor I in the regulation of 3'' UTR length. Cell Rep 1: 753-763
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan GH, Greenblatt J, Patterson SD, Wickens M, Bentley DL (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385: 357-361
Millevoi S, Decorsiere A, Loulergue C, Iacovoni J, Bernat S, Antoniou M, Vagner S (2009) A physical and functional link between splicing factors promotes pre-mRNA 3'' end processing. Nucleic Acids Research 37: 4672-4683
Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3'' end processing regulation. Nucleic Acids Research 38: 2757-2774
Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3'' end processing regulation. Nucleic Acids Res 38: 2757-2774
Murcha MW, Wang Y, Narsai R, Whelan J (2014) The plant mitochondrial protein import apparatus - the differences make it interesting. Biochim Biophys Acta 1840: 1233-1245
Murthy KGK, Manley JL (1995) THE 160-KD SUBUNIT OF HUMAN CLEAVAGE POLYADENYLATION SPECIFICITY FACTOR COORDINATES PRE-MESSENGER-RNA 3''-END FORMATION. Genes & Development 9: 2672-2683
Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463: 457-463
Okuda K, Chateigner-Boutin A-L, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanaia T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21: 146-156
Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci U S A 104: 8178-8183
Okuda K, Nakamura T, Sugita M, Shimizu T, Shikanai T (2006) A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. J Biol Chem 281: 37661-37667
Okuda K, Shikanai T (2012) A pentatricopeptide repeat protein acts as a site-specificity factor at multiple RNA editing sites with unrelated cis-acting elements in plastids. Nucleic Acids Res 40: 5052-5064
Peeters NM, Hanson MR (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8: 497-511
Proudfoot N (2004) New perspectives on connecting messenger RNA 3'' end formation to transcription. Current Opinion in Cell Biology 16: 272-278
Rataj K, Simpson GG (2014) Message ends: RNA 3'' processing and flowering time control. J Exp Bot 65: 353-363
Rosonina E, Kaneko S, Manley JL (2006) Terminating the transcript: breaking up is hard to do. Genes & Development 20: 1050-1056
Ruegsegger U, Blank D, Keller W (1998) Human pre-mRNA cleavage factor I-m is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Molecular Cell 1: 243-253
Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB (2013) Arabidopsis chloroplast quantitative editotype. FEBS Letters 587: 1429-1433
Schallenberg-Ruedinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V (2013) A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biology 10: 1549-1556
Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18: 2650-2663
Schoenemann L, Kuehn U, Martin G, Schaefer P, Gruber AR, Keller W, Zavolan M, Wahle E (2014) Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. Genes & Development 28: 2381-2393
Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton GJ, Simpson GG (2012) Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat Struct Mol Biol 19: 845-852
Shikanai T (2006) RNA editing in plant organelles: machinery, physiological
function and evolution. Cell. Mol. Life Sci. 63: 698–708
Shikanai T (2015) RNA editing in plants: Machinery and flexibility of site recognition. Biochim Biophys Acta 1847: 779-785
Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY Is an RNA 3′ End-Processing Factor that Interacts with FCA to Control the Arabidopsis Floral Transition. Cell 113: 777-787
Small I, Peeters N (2000) The PPR motif- a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci 25: 46-47
Solotoff V, Moseler R, Schulte U (2015) Two pentatricopeptide repeat domain proteins are required for the synthesis of respiratory complex I. Current Genetics 61: 19-29
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC (2015) Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J
Sung TY, Tseng CC, Hsieh MH (2010) The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. Plant J 63: 499-511
Takagaki Y, Manley JL (2000) Complex protein interactions within the human polyadenylation machinery identify a novel component. Molecular and Cellular Biology 20: 1515-1525
Takasgaki YD, Manley JL (1997) RNA recognition by the human polyadenylation factor CstF. Molecular and Cellular Biology 17: 3907-3914
Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013) Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. Plos One 8: e65343
Takenaka M, Zehrmann A, Verbitskiy D, Hartel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47: 335-352
Tasaki E, Hattori M, Sugita M (2010) The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. Plant J 62: 560-570
Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG (2012) Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis. Plant Cell 24: 4376-4388
Tian B, Manley JL (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends in Biochemical Sciences 38: 312-320
Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiology 135: 1206-1220
Venkataraman K, Brown KM, Gilmartin GM (2005) Analysis of a noncanonical poly(A) site reveals a trinartite mechanism for vertebrate poly(A) site recognition. Genes & Development 19: 1315-1327
Wang CM (2010) Isolation, identification and functional characterization of NHP25 in Arabidopsis development and growth. Master Thesis.
Williams-Carrier R, Kroeger T, Barkan A (2008) Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. RNA 14: 1930-1941
Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG (2011) Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proceedings of the National Academy of Sciences of the United States of America 108: 12533-12538
Xing D, Li QQ (2011) Alternative polyadenylation and gene expression regulation in plants. Wiley Interdiscip Rev RNA 2: 445-458
Xing D, Zhao H, Li QQ (2008) Arabidopsis CLP1-SIMILAR PROTEIN3, an Ortholog of Human Polyadenylation Factor CLP1, Functions in Gametophyte, Embryo, and Postembryonic Development. Plant Physiology 148: 2059-2069
Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ (2006) The 73 kD Subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Molecular Biology 61: 799-815
Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T (2013) Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 10: 1419-1425
Yao YL, Song LH, Katz Y, Galili G (2002) Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulates 3 '' mRNA cleavage and polyadenylation. Journal of Experimental Botany 53: 2277-2278
Yap A, Kindgren P, Colas des Francs-Small C, Kazama T, Tanz SK, Toriyama K, Small I (2015) AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotes atpF splicing in Arabidopsis and rice. Plant J 81: 661-669
Yeh H-S, Yong J (2016) Alternative Polyadenylation of mRNAs: 3 ''-Untranslated Region Matters in Gene Expression. Molecules and Cells 39: 281-285
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang HW, Wang J, Zhu JK, Shi Y, Yan N (2013) Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504: 168-171
Yu W, Schuster W (1995) Evidence for a site-specific cytidine deamination reaction involved in C to U RNA editing of plant-mitochondria. J Biol Chem
270: 18227-18233
Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3: e2410
Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1: 641-646
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X (2015) Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Research 25: 864-876



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top