跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂學翰
研究生(外文):Hsueh-Han Lu
論文名稱:甘藷IbWIPK基因參與受傷防禦信息調控機制之探討
論文名稱(外文):Regulation and signal transduction of sweet potato IbWIPK in wounding response
指導教授:葉開溫葉開溫引用關係
指導教授(外文):Kai-Wun Yeh
口試委員:謝旭亮鄭秋萍吳素幸楊藹華
口試委員(外文):Hsu-Liang HsiehChiu-Ping ChengShu-Hsing WuAi-hua Yang
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:120
中文關鍵詞:甘藷sporamin受傷逆境IbWIPKIbbHLH3/4IbEIL1IbTGA1aTGACG-motif
外文關鍵詞:Sweet potatosporaminIbWIPKwounding stressIbbHLH3/4IbEIL1IbTGA1a
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Sporamin是甘藷塊根中的儲藏性蛋白質,具有胰蛋白酶抑制活性,平時在甘藷葉片中不會表達,但在受傷逆境下IbNAC1轉錄因子能正向調控sporamin大量表現於甘藷葉片,提高甘藷抗蟲能力。過去的研究已知,甘藷MAPK家族中的IbWIPK會被受傷誘導表現,並調控甘藷抗蟲基因IbNAC1及sporamin表現量,但受傷訊息調控IbWIPK基因表現的機制目前仍未明瞭。本研究首先選殖出884-bp的IbWIPK啟動子區域,經由啟動子活性分析實驗,進一步從IbWIPK啟動子中篩選出在TGACG-motif受傷活化IbWIPK啟動子的關鍵角色。更進一步研究發現,甘藷內生性bZIP轉錄因子—IbTGA1a可以直接的與TGACG-motif結合並提高報導基因表現的活性,且當甘藷葉片受傷時IbTGA1a之表達比IbWIPK更為迅速,這些結果顯示IbTGA1a為IbWIPK的上游調控因子。此外,本研究利用酵母菌雙雜合法篩選出可與IbWIPK蛋白質交互作用之轉錄因子—IbbHLH3及IbbHLH4及IbEIL1轉錄因子,我們推測IbWIPK可能透過磷酸化這些轉錄因子以調控茉莉酸與乙烯反應。綜合這些結果,本研究提出了一個受傷誘導IbWIPK表現的訊息傳遞機制,並透過IbWIPK蛋白質與下游目標蛋白質結合,以協同調控植物的荷爾蒙反應。

Sporamin is a storage protein of tuberous root with trypsin inhibitory activity in sweet potato. It has been reported that IbNAC1 transcription factor can upregulate sporamin expression in sweet potato leaves upon wounding, and enhance resistant ability against herbivory. Previously, a MAPK family protein, IbWIPK, has been identified as a wound-inducible activator for IbNAC1 and sporamin expression. However the wound-regulatory mechanism of IbWIPK expression is still unclear. In this study, the 884-bp of IbWIPK promoter region was cloned and analyzed. In the promoter activity analysis, we found that TGACG-motif is important in the activation of IbWIPK promoter in response to wounding. A combination of DNA/protein interaction resulted that a bZIP transcription factor, IbTGA1a, was screened to bind to and activate TGACG-motif. Furthermore, the expression of IbTGA1a was induced faster than IbWIPK after wounding. These results suggested that IbTGA1a is the upstream activator of IbWIPK. Additionally, two bHLH transcription factors, IbbHLH3 and IbbHLH4, and one IbEIL1 were found to interact with IbWIPK by yeast-two hybrid assays, suggesting that IbWIPK might modulate JA response and ethylene response by interaction and phosphorylation of these target proteins. Collectively, this study proposes a signal transduction pathway of IbWIPK expression during wounding stress, and it regulates the hormone responses by protein interaction and phosphorylation in sweet potato leaves.

目錄
中文摘要……………………………………………………………………………... i
Abstract…………………………………………………………………………….…ii
目錄………………………………………………………………………………..iii
圖表目錄………………………………………………………………………….......vi
附圖表目錄……………………………...…………………………………………..xiii
第一章 前言
第一節 植物對於蟲害逆境之感測機制………………………………………..1
第二節 植物抗蟲訊息傳遞路徑………………………………………………..2
第三節 甘藷抗蟲蛋白sporamin………….……………………………………..8
第四節 受傷訊息反應調控sporamin表現的轉錄因子–IbNAC1……………8
第五節 IbWIPK參與甘藷受傷誘導抗蟲反應…………….…………….…....10
第六節 研究目的與重要性…..…………………………………………….….11
第二章 材料與方法
第一節 基因表現量測定………………………………………………………12
第二節 全長基因序列選殖……………………………………………………17
第三節 載體構築及轉型……………………………………………………....23
第四節 阿拉伯芥基因轉殖與分析……………………………………….…...30
第五節 甘藷基因轉殖與分析…………………………………………………32
第六節 阿拉伯芥原生質體轉型法及相關實驗………………………………36
第七節 純化候選基因之重組蛋白……………………………………………40
第八節 SDS-PAGE蛋白質電泳………………………………………...…….41
第九節 電泳遷移分析實驗………………...………………………………….43
第十節 β葡萄糖甘胺酸 (GUS) 活性之測定……………………………44
第十一節 酵母菌轉型…………………………………………………………46
第十二節 植株之實驗處理…..………………………………………………48
第三章 結果
第一部份 甘藷基因IbWIPK表現量在受傷逆境之調控機制
第一節 IbWIPK之啟動子序列上之cis-acting elements預測………………50
第二節 TGACG-motif控制IbWIPK在受傷下的表現改變………………….51
第三節 選殖甘藷TGA轉錄因子…..………………………...………………..53
第四節 甘藷內生性TGA轉錄因子之親緣關係樹分析….…………..…...….54
第五節 受傷逆境下TGA轉錄因子之基因表現分析…………..……..….….54
第六節 甘藷TGA轉錄因子與TGACG-motif結合能力之探討...……..….…55
第七節 甘藷IbTGA1a對於TGACG-motif的活化能力檢測……….………..57
第八節 甘藷IbTGA1a細胞定位分析………….…………………………..….58
第九節 建構大量表現IbTGA1a之載體及轉基因植株…..…………………..58

第二部分甘藷基因IbWIPK參與調控下游荷爾蒙反應機制
第一節 尋找與IbWIPK具有結合能力之蛋白質…...….…………………….60
第二節 與IbWIPK具有結合能力之蛋白質基因釣取與分析…………...….61
第三節 IbEIL1、IbbHLH3、IbbHLH4與IbWIPK交互作用之探討………......61
第四節 甘藷內生性IbEIL1轉錄因子之親緣關係樹分析………..…….….63
第四章 討論
第一節 TGACG-motif參與IbWIPK受傷誘導表現之調控….……….……64
第二節 甘藷IbTGA1a調控IbWIPK在受傷逆境之表現量改變…………….66
第三節 甘藷IbTGA1a轉錄因子活性之因素探討…..……………..…..….….69
第四節 IbWIPK調控下游反應之機制…………………………………....…..70
第五節 結論及未來展望……………………………………………………....73
參考文獻…………………………………………………………………………..…75
圖表…………………………………………………………………………….….....84
附圖表……………………………………………………………………………....109


羅慧珊 (2014)。功能性分析甘藷之IbWIPK及IbMEK1參與生物性逆境抗性之研究。國立台灣大學生命科學院植物科學研究所碩士論文。
Aggarwal, K.K., Saluja, D., and Sachar, R.C. (1993). Phosphorylation of Rubisco in Cicer Arietinum - non-phosphoprotein nature of Rubisco in Nicotiana Tabacum. Phytochemistry 34, 329-335.
An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., Zhang, S., Ecker, J.R., and Guo, H. (2010). Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22, 2384-2401.
Atomi, H. (2002). Microbial enzymes involved in carbon dioxide fixation. J. Biosci. Bioeng. 94, 497-505.
Arimura, G., and Maffei, M.E. (2010). Calcium and secondary CPK signaling in plants in response to herbivore attack. Biochem. Biophys. Res. Commun. 400, 455-460.
Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512-515.
Bari, R., and Jones, J. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473-488.
Bergvinson, D., and Garcia-Lara, S. (2004). Genetic approaches to reducing losses of stored grain to insects and diseases. Curr. Opin. Plant Biol. 7, 480-485.
Berrocal-Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29, 23-32.
Bethke, G., Unthan, T., Uhrig, J.F., Poschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. U. S. A. 106.
Bleecker, A.B., and Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1-18.
Boex-Fontvieille, E., Daventure, M., Jossier, M., Hodges, M., Zivy, M., and Tcherkez, G. (2014). Phosphorylation pattern of Rubisco activase in Arabidopsis leaves. Plant Biol. 16, 550-557.
Bonaventure, G. (2012). Perception of insect feeding by plants. Plant Biol. 14, 872-880.
Carmo-Silva, A.E., and Salvucci, M.E. (2013). The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol. 161, 1645-1655.
Chadha, K.C., and Brown, S.A. (1974). Biosynthesis of Phenolic Acids in Tomato Plants Infected with Agrobacterium Tumefaciens. Can J Bot 52, 2041-2047.
Chen, H.J., Wang, S.J., Chen, C.C., and Yeh, K.W. (2006). New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci. 171, 367-374.
Chen, S.P., Lin, I.W., Chen, X., Huang, Y.H., Chang, H.C., Lo, H.S., Lu, H.H., and Yeh, K.W. (2016). Sweet potato NAC transcription factor, IbNAC1, up-regulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J. Doi: 10.1111/tpj.13171.
Chen, P.J., Senthilkumar, R., Jane, W.N., He, Y., Tian, Z., and Yeh, K.W. (2014). Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant biotechnology journal 12, 503-515.
Cheng, Y.T., Germain, H., Wiermer, M., Bi, D.L., Xu, F., Garcia, A.V., Wirthmueller, L., Despres, C., Parker, J.E., Zhang, Y.L., and Li, X. (2009). Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21, 2503-2516.
Chi, Y., Yang, Y., Zhou, Y., Zhou, J., Fan, B., Yu, J.Q., and Chen, Z. (2013). Protein-protein interactions in the regulation of WRKY transcription factors. Mol. Plant. 6, 287-300.
Chuang, C.F., Running, M.P., Williams, R.W., and Meyerowitz, E.M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13, 334-344.
Diezel, C., von Dahl, C.C., Gaquerel, E., and Baldwin, I.T. (2009). Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150, 1576-1586.
Doczi, R., Brader, G., Pettko-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, M., and Hirt, H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19, 3266-3279.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-2245.
Dudareva, N., Klempien, A., Muhlemann, J.K., and Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198, 16-32.
Eichenseer, H., Mathews, M.C., Bi, J.L., Murphy, J.B., and Felton, G.W. (1999). Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol. 42, 99-109.
Ekengren, S.K., Liu, Y.L., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 36, 905-917.
Ellenberger, T.E., Brandl, C.J., Struhl, K., and Harrison, S.C. (1992). The Gcn4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha-helices - crystal-structure of the protein-DNA complex. Cell 71, 1223-1237.
Fernandez-Calvo, P., Chini, A., Fernandez-Barbero, G., Chico, J.M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., Pauwels, L., Witters, E., Puga, M.I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G., and Solano, R. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701-715.
Gao, F., Su, Q., Fan, Y.L., and Wang, L. (2010). Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Sci. China-Life Sci. 53, 1315-1321.
Gatz, C. (2013). From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant-Microbe Interact. In 26, 151-159.
Godard, K.A., White, R., and Bohlmann, J. (2008). Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69, 1838-1849.
Guo, D., Li, H.L., Tang, X., and Peng, S.Q. (2014). Molecular and functional characterization of the HbSRPP promoter in response to hormones and abiotic stresses. Transgenic Res. 23, 331-340.
Halitschke, R., Gase, K., Hui, D.Q., Schmidt, D.D., and Baldwin, I.T. (2003). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera Sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol. 131, 1894-1902.
Haq, S.K., Atif, S.M., and Khan, R.H. (2004). Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch. Biochem. Biophys. 431, 145-159.
Heil, M., and Karban, R. (2010). Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137-144.
Heiling, S., Schuman, M.C., Schoettner, M., Mukerjee, P., Berger, B., Schneider, B., Jassbi, A.R., and Baldwin, I.T. (2010). Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22, 273-292.
Holopainen, J.K. (2004). Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529-533.
Huang, P.Y., Catinot, J., and Zimmerli, L. (2016). Ethylene response factors in Arabidopsis immunity. J. Exp. Bot. 67, 1231-1241.
Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S.Q., Hirt, H., Wilson, C., Heberle-Bors, E., Ellis, B.E., Morris, P.C., Innes, R.W., Ecker, J.R., Scheel, D., Klessig, D.F., Machida, Y., Mundy, J., Ohashi, Y., Walker, J.C., and Grp, M. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308.
Imanishi, S., Kito-Nakamura, K., Matsuoka, K., Morikami, A., and Nakamura, K. (1997). A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol. 38, 643-652.
Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F., and Grp, b.R. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111.
Jassbi, A.R., Gase, K., Hettenhausen, C., Schmidt, A., and Baldwin, I.T. (2008). Silencing geranylgeranyl diphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol. 146, 974-986.
Kanchiswamy, C.N., Takahashi, H., Quadro, S., Maffei, M.E., Bossi, S., Bertea, C., Zebelo, S.A., Muroi, A., Ishihama, N., Yoshioka, H., Boland, W., Takabayashi, J., Endo, Y., Sawasaki, T., and Arimura, G. (2010). Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol. 10.
Kandoth, P.K., Ranf, S., Pancholi, S.S., Jayanty, S., Walla, M.D., Miller, W., Howe, G.A., Lincoln, D.E., and Stratmann, J.W. (2007). Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemi n-mediated defense response against herbivorous insects. Proc. Natl. Acad. Sci. U. S. A. 104, 12205-12210.
Katagiri, F., Seipel, K., and Chua, N.H. (1992). Identification of a novel dimer stabilization region in a plant bZIP transcription activator. J. Mol. Cell Biol. 12, 4809-4816.
Kazan, K., and Manners, J.M. (2013). MYC2: the master in action. Mol. Plant. 6, 686-703.
Kim, S.Y., Bender, K.W., Walker, B.J., Zielinski, R.E., Spalding, M.H., Ort, D.R., and Huber, S.C. (2016). The Plastid Casein Kinase 2 phosphorylates Rubisco activase at the Thr-78 Site but is not essential for regulation of Rubisco activation state. Front. Plant Sci. 7.
Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., and Zhang, S. (2012). Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8, e1002767.
Li, J., Li, M.J., Liang, D., Cui, M., and Ma, F.W. (2013). Expression patterns and promoter characteristics of the gene encoding Actinidia deliciosa L-galactose-1-phosphate phosphatase involved in the response to light and abiotic stresses. Mol. Biol. Rep. 40, 1473-1485.
Lindermayr, C., Sell, S., Muller, B., Leister, D., and Durnera, J. (2010). Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by Nitric Oxide. Plant Cell 22, 2894-2907.
Lu, J., Li, J.C., Ju, H.P., Liu, X.L., Erb, M., Wang, X., and Lou, Y.G. (2014). Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol. Plant. 7, 1670-1682.
Meldau, S., Wu, J., and Baldwin, I.T. (2009). Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata''s susceptibility to herbivores in the glasshouse and in nature. New Phytol. 181, 161-173.
Meng, X., Xu, J., He, Y., Yang, K.Y., Mordorski, B., Liu, Y., and Zhang, S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126-1142.
Mithofer, A., and Boland, W. (2008). Recognition of herbivory-associated molecular patterns. Plant Physiol. 146, 825-831.
Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498.
Moloshok, T., Pearce, G., and Ryan, C.A. (1992). Oligouronide signaling of proteinase-inhibitor genes in plants - structure-activity-relationships of digalacturonic and trigalacturonic acids and their derivatives. Arch. Biochem. Biophys. 294, 731-734.
Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., and Berger, S. (2008). General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20, 768-785.
Nakata, M., Mitsuda, N., Herde, M., Koo, A.J., Moreno, J.E., Suzuki, K., Howe, G.A., and Ohme-Takagi, M. (2013). A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25, 1641-1656.
Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y., and Shigeoka, S. (2011). HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52, 933-945.
Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B.A., Lin, Q., Zhang, Z.B., Zhang, J.S., and Chen, S.Y. (2012). Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell and Environment 35, 1156-1170.
Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239-247.
Ollerstam, O., and Larsson, S. (2003). Salicylic acid mediates resistance in the willow Salix Viminalis against the gall midge Dasineura Marginemtorquens. J. Chem. Ecol. 29, 163-174.
Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D.F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.
Pieterse, C.M., and Van Loon, L. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7, 456-464.
Puranik, S., Sahu, P.P., Srivastava, P.S., and Prasad, M. (2012). NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369-381.
Rajarapu, S.P., Mamidala, P., Herms, D.A., Bonello, P., and Mittapalli, O. (2011). Antioxidant genes of the emerald ash borer (Agrilus planipennis): Gene characterization and expression profiles. J. Insect Physiol. 57, 819-824.
Rajendran, S., Lin, I.W., Chen, M.J., Chen, C.Y., and Yeh, K.W. (2014). Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato. BMC Plant Biol. 14.
Rodriguez, M.C.S., Petersen, M., and Mundy, J. (2010). Mitogen-Activated Protein Kinase Signaling in Plants. Annu. Rev. Plant Biol., Vol 61 61, 621-649.
Ryan, C.A., and Pearce, G. (2003). Systemins: A functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100, 14577-14580.
Schindler, U., Beckmann, H., and Cashmore, A.R. (1992). Tga1 and G-Box Binding-Factors - 2 distinct classes of Arabidopsis leucine zipper proteins compete for the G-Box-Like Element TGACGTGG. Plant Cell 4, 1309-1319.
Sagi, M., and Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141, 336-340.
Seo, S., Sano, H., and Ohashi, Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11, 289-298.
Sethi, V., Raghuram, B., Sinha, A.K., and Chattopadhyay, S. (2014). A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26, 3343-3357.
Shearer, H.L., Cheng, Y.T., Wang, L.P., Liu, J.M., Boyle, P., Despres, C., Zhang, Y.L., Li, X., and Fobert, P.R. (2012). Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Mol. Plant-Microbe Interact. In 25, 1459-1468.
Snoeren, T.A., Kappers, I.F., Broekgaarden, C., Mumm, R., Dicke, M., and Bouwmeester, H.J. (2010). Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J. Exp. Bot. 61, 3041-3056.
Song, S.S., Huang, H., Gao, H., Wang, J.J., Wu, D.W., Liu, X.L., Yang, S.H., Zhai, Q.Z., Li, C.Y., Qi, T.C., and Xie, D.X. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell 26, 263-279.
Song, S., Qi, T., Fan, M., Zhang, X., Gao, H., Huang, H., Wu, D., Guo, H., and Xie, D. (2013). The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9, e1003653.
Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X.N., and Pieterse, C.M.J. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
Steppuhn, A., Gase, K., Krock, B., Halitschke, R., and Baldwin, I.T. (2004). Nicotine''s defensive function in nature. PLoS. Biol. l 2, 1074-1080.
Thaler, J.S., Farag, M.A., Pare, P.W., and Dicke, M. (2002). Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 5, 764-774.
Wang, S.J., Lan, Y.C., Chen, S.F., Chen, Y.M., and Yeh, K.W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol.Biol. 48, 223-231.
Wang, L., Zhu, W., Fang, L., Sun, X., Su, L., Liang, Z., Wang, N., Londo, J.P., Li, S., and Xin, H. (2014). Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 14, 103.
Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100, 681-697.
Wasternack, C., and Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111, 1021-1058.
Wu, J.Q., Hettenhausen, C., Meldau, S., and Baldwin, I.T. (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19, 1096-1122.
Yalpani, N., and Raskin, I. (1993). Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol. 1, 88-92.
Yeh, K.-W., Lin, M.-I., Tuan, S.-J., Chen, Y.-M., Lin, C.-J., and Kao, S.-S. Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reports 16, 696-699.
Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., and Lin, C.Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol. Biol. 33, 565-570.
Yin, Y.H., Wu, D.Y., and Chory, J. (2002). Plant receptor kinases: Systemin receptor identified. Proc. Natl. Acad. Sci. U. S. A. 99, 9090-9092.
Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789-795.
Zander, M., Thurow, C., and Gatz, C. (2014). TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol. 165, 1671-1683.
Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.Q., Wang, Y., and Li, C. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9, e1003422.
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.Q., Seki, M., Zhou, J.M., and Guo, H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 12539-12544.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top