(3.230.173.249) 您好!臺灣時間:2021/04/21 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王盟勝
研究生(外文):Meng-Shung Wang
論文名稱:阿拉伯芥HMGB15蛋白與組蛋白去乙醯化酶HDA6互作參與開花調控之研究
論文名稱(外文):Arabidopsis HMGB15 interacts with the histone deacetylase HDA6 and regulates flowering time
指導教授:吳克強
指導教授(外文):Ke-Qiang Wu
口試委員:林讚標鄭秋萍張英王雅筠
口試委員(外文):Tsan-Piao LinChiu-Ping ChengIng-Feng ChangYa-Yun Wang
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:75
中文關鍵詞:阿拉伯芥組蛋白去乙醯酶HMGB15開花
外文關鍵詞:Arabidopsishistone deacetylasesHMGB15flowering time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
HMG蛋白是核蛋白第二多的蛋白家族,在調控DNA彎曲和染色體構型扮演重要角色。在阿拉伯芥中, 16個HMG蛋白被分為4類:HMGB, SSRP, 3xHMG-Box, 和ARID-HMG,而HMGB15是屬於ARID-HMG類別。在先前的研究中,阿拉伯芥中HMGB15表現量降低時會造成花粉管延遲生長,並且會導致果莢短小及子代數目減少。在本研究中我們發現HMGB15會和組蛋白去乙醯化酶HDA6在細胞核中有交互作用。藉由酵母菌雙雜合系統實驗進一步證明 HMGB15蛋白會和HDA6蛋白的C端有交互作用。同時,hmgb15的突變株在短日照下有早開花的表型,而HMGB15過表達殖株會有晚開花的表型。通過檢測hmgb15突變株中及過表達植物中基因表達,我們發現相對於野生型,參與開花調控的下游基因表達在hmgb15突變株和過表達植物也都有受到影響。另外,當在hda6突變株中過量表達HMGB15時會造成早開花的表型,說明HMGB15作用在HDA6下游。綜合上述結果,我們可以知道HMGB15會和HDA6有交互作用並且調控植物開花時間。




HMG-box containing proteins are the second most abundant nuclear protein family in plants cells. They play an important role in modulation of DNA bending and chromosome architecture. In Arabidopsis, 16 HMG proteins can be classified into 4 classes: HMGB, SSRP, 3xHMG-Box, and ARID-HMG. AtHMB15 belongs to the ARID-HMG class. Previous studies showed that knocking down AtHMGB15 expression via a Ds insertion caused retarded pollen tube growth, leading to a significant reduction in the seed set. HDA6 is a RPD3-type histone deacetylase involved in flowering and hda6 mutants display a late flowering phenotype. In this study, it was showed that HDA6 interacts with HMGB15 in the nucleus. Moreover, HMGB15 interacts with the C-terminus of HDA6 in yeast two hybrid assays. Compared to wild type, hmgb15 mutants flowered early under short day conditions while HMGB15 overexpressing plants showed late flowering. The expression levels of the genes involved in flowering time control were changed in hmgb15 and HMGB15 overexpressing plants compared with wild type. Furthermore, overexpressing HMGB15 in the hda6 mutant resulted in an early flowering phenotype, indicating that HMGB15 may act downstream of HDA6 in flowering time control. Taken together, our results indicate that HMGB15 interacts with HDA6 and is involved in flowering time control in Arabidopsis.


致謝.... I
中文摘要........ II
Abstract....... III
List of Tables......... VI
List of Figures........ VII
List of Supplementary Figures.......... IX
List of abbreviations.......... X
Introduction... 1
High Mobility Group (HMG) proteins..... 1
Structural variability and function of plant HMGB proteins....... 2
Histone deacetylases in Arabidopsis.... 4
Materials and Methods.. 5
Plant materials........ 6
Quick DNA extraction... 6
RNA isolation.......... 7
DNase treatment........ 9
Quantitative RT-PCR analysis........... 9
Chromatin immunoprecipitation assays... 11
Bimolecular Fluorescence Complementation (BiFC) assays ........................................20
Transfection of tobacco leaves by Agrobacterium (For BiFC assays)................................ 23
Yeast two-hybrid assays................ 24
Western blot assays:................... 26
Results................................ 28
Phylogenic analysis and sequence comparison of HMG proteins............................... 28
The expression pattern of ARID-HMG genes....... 28
Subcellular localization of HMGB15 in Arabidopsis ........................................29
HMGB15 interacts with HDA6............. 29
Identification of interaction domains of HDA6 and HMGB15 ........................................30
Identification of homozygous T-DNA insertion mutants of HMGB15................................. 31
hmgb15 mutant plants display early flowering phenotypes ........................................31
HMGB15 is involved in flowering time control in Arabidopsis............................ 32
HMGB15 overexpressing plants show delayed flowering ........................................32
HDA6 and FLD regulate the expression of HMGB15................................. 33
Early flowering phenotype of hda6-6/HMGB15-OE3.....................................34
Discussion............................. 35
HMGB15 interacts with the histone deacetylase HDA6 ........................................35
HMGB15 regulates flowering in Arabidopsis............................ 37
Figures.................................39
Supplementary Figure................... 63
References............................. 70


Agrestin, A. and Bianchi, M. A. (2003). HMGB proteins and gene expression. Elsevier. 13:170-178.
Alinsug, M. V., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 9: 37.
Assenberg, R., Webb, M., Connolly, E., Stott, K., Watson, M., Hobbs, J., and Thomas, J.O. (2008). A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J. 411: 553-561.
Antosch, M., Mortensen, S.A., and Grasser, K. D. (2012). Plant proteins containing high mobility group box DNA-binding domains modulate different nuclear processes. Plant Physiol. 159: 875–883.
Bustin, M., and Reeves, R. (1996). High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acids Res. Mol. Bol. 54: 35–100.
Bustin, M. (1999). Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19: 5237–5246.
Bustin, M. (2001). Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci. 26: 152-153.
Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature. 447: 407–412.
Chen, Z.J., and Tian, L. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta. 1769: 295-307.


Earley, K., Lawrence, R. J., Pontes, O., Reuther, R., Enciso, A. J., Silva, M., Neves, N., Gross, M., Viegas, W., and Pikaard, C. S. (2006). Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20: 1283-1293.
Elenkov, I., Pelovsky, P., Ugrinova, I., Takahashi, M., and Pasheva, E. (2011). The DNA binding and bending activities of truncated tail-less HMGB1 protein are differentially affected by Lys-2 and Lys-81 residues and their acetylation. Int. J. Biol Sci. 7: 691-699.
Grasser, K. D., Grill, S., Duroux, M., Launholt, D., Thomsen, M.S., Nielsen, B.V., Nielsen, H. K., and Merkle, T. (2004). HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein. Biochem. J. 43: 1309-1314.
Hansen, F. T., Madsen, C. K., Nordland, A. M., Grasser, M., Merkle, T. and Grasser, K. D. (2008). A novel family of plant DNA-binding proteins containing both HMG-box and AT-rich interaction domains. Biochem. 47: 13207–13214.
Iwahara, J., Iwahara, M., Daughdrill, G.W., Ford, J., and Clubb, R.T. (2002). The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA. EMBO J. 21: 1197-1209.
Ito I, Fukazawa J, Yoshida M. (2007). Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J. Biol Chem. 282: 16336–16344
Ikeda, Y., Kinoshita, Y., Susaki, D., Ikeda, Y., Iwano, M., Takayama, S., Higashiyama, T., Kakutani, T., and Kinoshita, T. (2011). HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev. 21: 589–596.
Ivan, E., Pelovsky, P., Ugrinova, I., Takahashi, M., and Pasheva, E. (2011). The DNA Binding and Bending Activities of Truncated Tail-less HMGB1 protein are Differentially Affected by Lys-2 and Lys-81 Residues and Their Acetylation. Int. J. Biol. Sci. 7(6): 691-699.
Kortschak, R. D., Tucker, P. W., and Saint, R. (2000). ARID proteins come in from the desert. Trends. Biochem. Sci. 25: 294-299.
Klosterman, S.J., and Hadwiger, L.A. (2002). Plant HMG proteins bearing the AT-hook motif. Plant Sci. 162: 855–866.
Kwak, K. J., Kim, J. Y., Kim, Y. O., and Kang, H. (2007). Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant Cell Physiol. 48: 221–231.
Kim, W., Latrasse, D., Servet, C., and Zhou, D. X. (2012). Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem. Biophys. Res. Commun. 432: 394–398.
Launholt, D., Grnlund, J.T., Nielsen, H.K., and Grasser, K.D. (2007). Overlapping expression patterns among the genes encoding Arabidopsis chromosomal high mobility group (HMG) proteins. FEBS Lett. 581: 1114-1118.
Lildballe, D.L., Pedersen, D.S., Kalamajka, R., Emmersen, J., Houben, A., and Grasser, K.D. (2008). The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance and transcriptome in Arabidopsis. J. Mol. Biol. 384: 9–21.
Lolas, I.B., Himanen, K., Gronlund, J.T., Lynggaard, C., Houben, A., Melzer, M., Van Lijsebettens, M., and Grasser, K.D. (2010). The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J. 61: 686–697.
Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell. 13: 1047-1061.
Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M., and Reinberg, D. (1999). The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 400: 284–288
Pandey, R., Muller, A., Napoli, C. A., Selinger, D. A., Pikaard, C. S., Richards, E. J., Bender, J., Mount, D. W., and Jorgensen, R. A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30: 5036–5055.
Pedersen, D. S., and Grasser, K. D. (2010). The role of chromosomal HMGB proteins in plants. Biochimi. Biophys. Acta. 1799: 171–174.
Pedersen, D.S., Coppens, F., Ma, L., Antosch, M., Marktl, B., Merkle, T., Beemster, G.T.S., Houben, A., and Grasser, K.D. (2011). The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. New Phytol. 192: 577–589.
Riechmann, J, L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O, J., Samaha, R, R. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 290: 2105–2110
Reeves, R. (2010). Nuclear functions of the HMG proteins. Biochim. Biophys. Acta. 1799: 3-14.
Stros, M., Launholt, D., and Grasser, K.D. (2007). The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell. Mol. Life Sci. 64: 2590–2606.
Tian, L., and Chen, Z.J. (2001). Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci USA. 98: 200-205.
Thomas, J.O. (2001). HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans. 29: 395–401.
Ugrinova, I., Pasheva, E. A., Armengaud, J., and Pashev, I. G. (2001). In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures. Biochemistry. 40: 14655-14660.
Ugrinova, I., Mitkova, E., Moskalenko, C., Pashev, I., and Pasheva, E. (2007). DNA bending versus DNA end joining activity of HMGB1 protein is modulated in vitro by acetylation. Biochemistry. 46: 2111-2117.
Ueda, T., and Yoshida, M. (2010). HMGB proteins and transcriptional regulation. Biochem. Biophys. Acta. 1799: 114-118.
Wilsker, D., Patsialou, A., Dallas, P. B., and Moran, E. (2002). ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13: 95-106.
Wilskera, D., Probstb, L., Wainc, H.M., Maltaisd, L., Tuckerb, P.W., and Moran, E. (2005). Nomenclature of the ARID family of DNA-binding proteins. Genomics. 86: 242 – 251.
Wu, K., Malik, K., Tian, L., Brown, D., and Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol. Biol. 44: 167-176.
Wu, K., Zhang, L., Zhou, C., Yu, C. W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59:225-234
Xia, C., Wang, Y. J., Liang, Y., Niu, Q. K., Tan, X. Y., Chu, L. C., Chen, L. Q., Zhang, X. Q., and Ye, D. (2014). The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. Plant J. 79: 741-756.
Yu, C. W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156: 173–184.
Yu, C.W., Chang, K.Y., and Wu, K. (2016). Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. Front Plant Sci. 7: 555.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔