跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王懷慶
研究生(外文):Huai-Ching Wang
論文名稱:溫度對東方梨花芽分化及休眠之影響
論文名稱(外文):Effect of Temperature on Flower Bud Formation and Bud Dormancy in Asian Pear
指導教授:林書妍陳右人陳右人引用關係
指導教授(外文):Shu-Yen LinIou-Zen Chen
口試委員:阮素芬林慧玲李金龍
口試委員(外文):Su-Feng Roan
口試日期:2016-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:修剪氰滿素營養生長停止花芽形成
外文關鍵詞:pruninghydrogen cynamidevegetative growth cessationfloral formation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
種植於低海拔地區之梨高溫期過長,易造成花芽敗育,且需克服休眠解除之問題,因此利用修剪及溫度試驗探討解決之道。試驗一是利用高接後新興梨(‘Shinko’ Pyrus pyrifolia)新生的枝條,於2015年秋季(8-10月)修剪,並分別施予4%(稀釋25倍)與2%(稀釋50倍)氰滿素(商品名:春雷,含49%氰胺),使修剪後之腋芽能萌發,觀察萌發之新梢營養生長、花芽分化、休眠狀態等。處理後,以8月修剪後催芽有較佳萌芽率,達75.9±9.7%,處理時間越晚萌芽率越低。在8-10月處理後新梢可花芽分化,但是枝條快速停止生長,枝條最長者為8月處理,枝條長度平均8.9±1.3公分左右,長度不足以作為隔年梨穗之使用。由氣象紀錄資料可知2015年卓蘭地區秋季仍處在高溫期,推測可能為枝條快速停止生長之誘導因子。試驗二為探討溫度對梨休眠之影響。鳥梨(bird pear P. lindleyi)、橫山梨(‘Heng-Shan’ P. pyrifolia)與新興梨(‘Shinko’ P. pyrifolia)盆栽於2015年3月6日起分別置於為日夜溫30/25℃、25/20℃、20/15℃、15/13℃之環境中,光週為自然日長,觀察新生枝條長度、生長停止時間、花芽形成、休眠狀態。鳥梨於30/25℃、25/20℃環境中60-75天後停止營養生長;20/15℃處理者於處理120天後生長停止,15/13℃處理者至180天調查結束時枝條仍持續生長。橫山梨植株於30/25℃、25/20℃環境中,30-60天後停止營養生長,兩處理植株在生長停止後形成頂芽;20/15℃處理者於處理120天後生長停止並形成頂芽,15/13℃處理者至180天仍顯示持續生長,無頂芽出現。新興梨在所有溫度處理下,於45-60天後枝條生長皆停止。受試3種梨皆於30/25℃環境中具有花芽形成能力。處理180天後(9月)修剪,受試3種梨在各溫度中皆能重新抽梢,芽體似仍處在相對休眠與生理休眠之間。以卓蘭田間6-9月枝條單芽扦插,其萌芽率最高為7月60.4±5.40%,9月後萌芽率大幅下降,降至39.2±8.90%。且枝條內80%乙醇可溶性醣於9月亦有下降情形,而澱粉於9月後開始大量增加,推斷卓蘭低海拔地區於9月後已進入生理休眠。

The long high temperature period makes flower bud abortion. In this study, pruning and 49% cynamide applcaition were used to let new lateral shoot growth in autumn (August to October) and the shoot length, flower formation, and dormancy were investigated in ‘Shinko’ (Pyrus pyrifolia) in Zhou-Lan. The highest percentage of bud break occurred in August, and it decreased in October as the dormancy development. Flower buds could be found during August to October, but the new shoot length was only 10 cm, and the growth ceased after a short time. These kind of shoots are not good enough to be the pear scion next year. Temperature is the key point to bud dormancy. Three Asian pear, bird pear (P. lindleyi), ‘Heng-Shan’ (P. pyrifolia), and ‘Shinko’ (P. pyrifolia) were put into 15/13℃, 25/20℃, 25/20℃, and 30/25℃, respectively, for 180 days. The vegetative growth of bird pear in 30/25℃, 25/20℃ ceased after 60-75 days. The shoots growth in 20/15℃ stopped after 120 days. However, the vegetative growth last for 180 days in 15/13℃. The vegetative growth of ‘Heng-Shan’ in 30/25℃ and 25/20℃ ceased after 45-60 days. The shoots growth in 20/15℃ stopped after 120 days. However, the vegetative growth also last for 180 days in 15/13℃. The vegetative growth of ‘Shinko’ stopped after 45-60 days in all temperature treatments. The floral formation could be investigated in all 3 varieties in 30/25℃. Three shoots were cut per month after July (after 120-day investigation) in every variety in all treatment. The percentage of bud break were above 33% during July to September in three varieties. It suggests the dormancy stage may be between paradormancy and endodormancy stage in September. However, comparing the bud break ratio of the shoots from Zhou-Lan dereased from 60% to 38% during July to September. Analyzing the carbohydrates and nitrogen contents in the shoots from Zhou-Lan during July to November. The total soluble solid decreased and the starch increased to the highest level after September. It suggests the dormancy stage would be into endodormancy in September.

口試委員會審定書 ……………………………………………………………………. i
致謝 …………………………………………………………………………………… ii
摘要 ……………………………………………………………………….…………. iii
Abstract ……………………………………………………………………………… iv
目錄 ………………………………………………………………………………….... v
表目錄 ……………………………………………………………………………….. vii
圖目錄 ……………………………………………………………………...……….. viii
第一章 前言 ………………………………………………………………………… 1
第二章 文獻回顧 .…………………………………………………………….……… 3
第一節 臺灣梨的生產 ……………………………………………………… 3
第二節 休眠誘導因子 ……………………………………………………… 3
第三節 梨的花芽發育 ……………………………………………………… 6
第四節 休眠程度之探測 ………….……….………………….……..………… 7
第五節 打破休眠 ………………………..………………….……..…………… 8
第六節 養分的變化與休眠之關係 …………………………………………. 10
第三章 材料與方法 ………………………………………………………………… 13
一、 試驗材料 …………………………………………………………………. 13
二、 試驗方法 …………………………………………………………………. 13
(一) 修剪與催芽對卓蘭地區新興梨花芽發育與休眠之影響 …..……. 13
(二) 不同溫度處理對三品種梨生長與休眠之影響 …………………… 14
(三) 生長箱環境與卓蘭低海拔地區田間環境之休眠性比較 ……….... 14
(四) 內容物分析 ………………………………………...………………. 14
第四章 結果與討論 ………………………………………………………………… 17
第一節 修剪與催芽對卓蘭地區新興梨花芽發育與休眠性之影響 …..…… 17
(一) 新興梨新梢營養生長狀態 …………………..………………… 17
(二) 新興梨新梢花芽形成狀態 …………………..………………… 18
(三) 休眠性之探討 …………………………………………………... 19
第二節 不同溫度處理對鳥梨、橫’梨、新興梨生長與休眠之影響 …..… 20
(一) 梨枝條生長狀態之觀察 ……………………………………….. 20
(二) 溫度對鳥梨、橫山梨、新興梨營養生長之影響 ………….…. 20
(三) 溫度對鳥梨、橫山梨、新興梨花芽形成之影響 ………….….. 23
第三節 生長箱環境與卓蘭低海拔地區環境之休眠性比較 ………………... 25
(一) 溫度處理影響休眠性表現之探討 ………………………….... 25
(二) 卓蘭低海拔地區新興梨休眠性表現 ……………………….... 26
(三) 生長箱環境與卓蘭低海拔地區休眠性之探討 ……………….. 28
第五章 結論 ………………………………………………………………………… 30
參考文獻 …………………………………………………………………………….. 58
附錄一、新興梨枝修剪方式及調查方式示意圖 ………………………………… 66
附錄二、溫度試驗流程圖 ………………………………………………………….. 68
附錄三、單芽扦插於吸水海綿,並至於25/20℃生長箱中觀察 ………………… 69
附錄四、氮含量測定─全氮(凱氏氮)分析(Kjedahl) ………………………………. 70
附錄五、碳水化合物含量測定─Anthrone法 …………………………………….. 71
附錄六、營養分析流程圖 ………………………………………………………….. 72
附錄七、2015年至2016年3月卓蘭地區氣象資料 ……………………………… 73


阮素芬. 2000. 鳥梨實生後裔生育特性調查、評估與矮性植株選拔模式建立. 國立國立臺灣大學園藝暨景觀學系博士論文. 臺北.
阮素芬、陳右人. 2005. 促進高接梨著果技術之探討. 台中區農業改良場特刊. 梨栽培管理技術研討會專集 75:223-241
林嘉興. 1988 葡萄休眠與催芽技術. 台中區農業改良場特刊. 葡萄生產技術. 14:189-196.
林嘉興、張林仁、廖萬正. 1995. 認識國產高品質梨之果實. 台中區農業改良場專訊. 12:6-8.
倪正柱. 1980. 台灣低海拔地區梨樹生長與花芽分化. 興大園藝5:38-41.
倪正柱. 1991. 落葉果樹芽體休眠與生產設計. 台灣果樹生產及研究發展研討會專刊 77-87.
段成國、李憲利、高東升、劉煥芳、李萌. 2004 內源ABA和GA3對歐洲甜櫻桃花芽自然休眠的調控. 園藝學報. 31(2):149-154.
陳中. 2005. 台灣梨樹的芽休眠生理與調控. 台中區農業改良場特刊. 梨栽培管理技術研討會專輯 75:429-454.
陳右人、阮素芬. 2009. 梨樹栽培簡介. 國立國立臺灣大學生物資源暨農學院. 農業推廣手冊65: 1-18.
曹靖玟. 2010. 玉金香梨高接用花穗的花序芽發育. 國立國立臺灣大學生態學與演化生物學研究所碩士論文. 臺北.
莊耿彰. 1996. 東方梨的一般栽培生理(一). 農業世界. 149:41-44.
張林仁、林嘉興、林信山. 1990. 梨樹之營養動態. 果樹營養與果園土壤管理研討會專集. 20:233-244.
張致盛. 2010. 葡萄芽體休眠即解除機制. 台中區農業改良場專題討論專輯特刊. 105:74-76.
張萌芬. 2015. 修剪時期對台灣低海拔新興梨(Pyrus pyrifllia Nakai)之花芽形成與休眠性之影響. 國立國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
楊耀祥、林嘉興、廖萬正. 1982. 氰氨基化鈣及Merit液肥隊打破巨峰葡萄休眠之影響. 興大園藝. 7:21-29.
廖萬正. 2005. 梨台中1號與台中2號品種之育成. 台中區農業改良場特刊. 梨栽培管理技術研討會專集. 75:112-136.
廖萬正、張林仁、張致盛. 2007. 梨一年雙收生產之研究. 台中區農業改良場研究彙報. 97:31-37.
鄭正勇. 葡萄芽休眠的生理研究(一) 內在離層酸(free abscisic acid)和激勃素(gibberellic acid)對於芽之休眠與在生長之誘發. 中國園藝. 22:26-33.
盧柏松. 1998. 橫山梨以氰氨基化鈣催芽之探討. 臺東區農業改良場研究彙報. 9:61-74.
盧柏松. 2005. 高接梨嫁接適期之研究. 台中區農業改良場特刊. 梨栽培管理技術研討會專集. 75:175-190.
松井弘之、足立浩代、湯田英二、中川昌一. .1987. 果樹葉及枝梢中質・ 酸含量季節的消長. 日本園藝學會昭和63年度春季大會研究發表要旨. p.82-83.
Abdulkadyrov, S.K., Batyrkhanov S.G., and Dzhabaev B.R. 1972. The process of apple flower differentiation. Tr. Dagest. Skh. Jnstit. 22:58-71.
Antcliff, A.J. and P. May. 1961. Dormancy and bud burst in Sultana vines. Vitis. 3:1-14.
Arora, R., L.J. Rowland, and K.K. Tanino. 2003. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience 38(5):911-921.
Banno, K., S. Hayashi, and K. Tanabe. 1986. Morphological and histological studies on flower bud differentiation and development in Japanese pear (Pyrus serotina Rehd.). J. Jpn. Soc. Hort. Sci. 55(3):258-265.
Benschop, J.J., M.B. Jackson, K. Guhl, R.A. Vreeburg, S.J. Croker, A.J. Peeters, and L.A. Voesenek. 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 44:756-768.
Benschop, J.J., J. Bou, A.J. Peeters, N. Wagemaker, K. Guhl, D. Ward, P. Hedden, T. Moritz, and L.A. Voesenek. 2006. Long-term submergence-induced elongation in Rumex palustris requires abscisicacid-dependent biosynthesis of gibberellin. Plant Physiol. 141:1644-1652.
Bonhomme, M., R. Rageau, A. Lacointe, and M. Gendraud. 2005. Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci. Hort. 105:223-240.
Campoy, J.A., D. Ruiz, and J. Egea. 2011a. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hort. 130:357-372.
Campoy, J.A., D. Ruiz, and J. Egea. 2011b. Seasonal progression of bud dormancy in apricot (Prunus armeniaca L.) in a Mediterranean climate: a single-node cutting approach. Plant Biosyst. 145:596-605.
Carvalho, R.I.N. and F. Zanette. 2004. Dormancy dynamics of ‘Imperial Gala’ apple tree buds during autumn and winter in a region of low chill occurrence. Rev. Bras. Frutic. 26:65-68.
Challice, J.S. and M.N. Westwood. 1973. Numerical taxonomic studies of genus Pyrus using both chemical and botanical characters. Bot. J. Linn. Soc. 67:121-148.
Cooke, J.K., M.E. Eriksson, and O. Junttila. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 35:1707-1728.
Edwards, G.R. 1987. Temperature in relation to peach culture in tropics. Acta Hort. 199:61-62.
Erez, A. and S. Lavee. 1971. The effect of climate conditions on dormancy development of peach buds. I. Temperature J. Am. Soc. Hort. Sci. 96:711-714.
Faust, M., A. Erez, L.J. Rowland, S.Y. Wang, and H.A. Norman. 1997. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32:623-629.
Fuchigami, L.H. and C.C. Nee. 1987. Degree growth stage model and rest-breaking mechanisms in temperate woody perennials. HortSciece 22:836-845.
Fuchigami, L.H., C.J. Weiser, and D.R. Evert. 1971. Induction of cold acclimation in Cornus stolinifera Michx. Plant Physiol. 47: 98-103
Halaly, T., B. Zion, A. Arbel, R. Regev, M. Barak, and E. Or. 2011. Short exposure to sublethal heat shock facilitates dormancy release in grapevines. Am. J. Enol. Vitic. 62:106-112.
Halaly, T., X. Pang, T. Batikoff, T. Keilin, O. Crane, A. Keren, J. Venkateswari, A. Ogrodovitch, and E. Or. 2008. Similar mechanisms are triggered by alternative external stimuli that induce dormancy release: comparative study of the effects of hydrogen cyanamide and heat shock on dormancy release in grape buds. Planta 228:79-88.
Heide, O.M. 2003. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warning Tree Physiol. 23: 931-936.
Heide, O.M. 2008. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci. Hortic. 115: 309-314.
Heide, O.M. 2011. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. J. Exp. Bot. 62(15):5397-5404.
Heide, O.M. and A.K. Prestrud. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25:109-114.
Ito, A., D. Sakamoto, and T. Moriguchi. 2012. Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci. Hort. 144:187-194.
Iwasaki, K. 1980. Effects of bud scale removal, calcium cyanamide, GA3 and ethephon on bud break in ‘Muscat of Alexandria’ grape (Vitis vinifera L.). J. Jpn. Soc. Hort. Sci. 48:395-398.
Junttila, O., J. Nilsen, and B. Igeland. 2003. Effect of temperature on the induction of bud dormancy in ecotypes of Betula pubescens and Betula pendula. Scand. J. For. Res. 18:208-217.
Kalcsits, L.A., S. Silim, and K. Tanino. 2009. Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus X spp.). Trees 23:971-979.
Kanayama, Y. 2009. Physiological roles of polyols in horticultural crops. J. Jpn. Soc. Hort. Sci. 78:158-168.
Lacointe, A., A. Kajji, F.A. Daudet, P. Archer, J.S. Frossard. 1993. Mobilization of carbon reserves in young walnut trees. Acta Bot. Gallica 140(4):435-441.
Lang, G.A. 1987. Dormancy: A new universal terminology. HortScience 22:817-820.
Lavee, S. and P. May. 1997. Dormancy of grapevine buds - facts and speculation. Aust. J. Grape Wine Res. 3:31-46.
Legave, J.M., B. Baculat, and N. Brisson. 2010. Assessment of chilling requirements of apricot floral buds: comparison of three contrasting chilling models under mediterranean condition. Acta Hort. 872:41-50.
Loescher, W.H. 1987. Physiology and metabolism of sugar alcohols in higher-plants. Physiol. Plant 70:553-557.
Loescher, W.H. and J.D. Everard. 1996. Sugar alcohol metabolism in sinks and source, p.185-207. In: Zamski, E and A.A. Schaffer (eds.). Photoassimilate distribution in plants and crops. Marcel Dekker, New York.
Malagi, G., M.R. Sachet, I. Citadin, F.G. Herter, M. Bonhomme, J.L. Regnard, and J.M. Legave. 2015. The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees 29:1365-1380.
Marquat, C., M. Vandamme, M. Gendraud, and G. Petel. 1999. Dormancy in vegetative buds of peach. Relation between carbohydrate absorption potentials and carbohydrate specific content in the bud during dormancy and its release. Sci. Hort. 79:151-162.
Mathiason, K., D. He, J. Grimplet, J. Venkateswari, D.W. Galbraith, E. Or, and A. Fennell. 2008. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct. Integr. Genomics 9:81-96.
Mazzitelli, L., R.D. Hancock, S. Haupt, P.G. Walker, S.D.A. Pont, J. McNicol, L. Cardle, J. Morris, R. Viola, R. Brennan, P.E. Hedley, and M.A. Taylor. 2007. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J. Exp. Bot. 58:1035-1045.
Mohamed, H.B., A.M. Vadel, J.M.C. Geuns, H. Khemira. 2010. Biochemical changes in dormant grapevine shoot tissues in response to chilling: Possible role in dormancy release. Sci. Hort. 124:440-447.
Nakasu, B.H., F.G. Herter, D.L. Leite, and M.C.B. Raseira. 1995. Pear flower bud abortion in southern Brazil. Acta Hort. 395:185-192.
Oh, S.D. and D. Klinac. 2004. The effect of bioregulators, nitrogen, leaf removal, and branch tipping on floral bud disorder of Japanese pear ‘Hosui’ (Pyrus pyrifolia Nakai). Acta Hort. 653:54-56.
Ophir, R., X. Pang, T. Halaly, J. Venkateswari, S. Lavee, D. Galbraith, and E. Or. 2009. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol. Biol. 71:403-423.
Pacey-Miller, T., K. Scott, E. Ablett, S. Tingey, A. Ching, and R. Henry. 2003. Genes associated with the end of dormancy in grapes. Funct. Integr. Genomics 3:144-152.
Palonen, P. 2006. Vegetative growth, cold acclimation and dormancy as affected by temperature and photoperiod in six red raspberry (Rubus idaeus L.) cultivars. Eur. J. Hort. Sci. 72:1-6.
Pedro, V.S., J.L. Peñuelas, and D.F. Jacobs. 2013. Nitrogen nutrition and drought hardening exert opposite effectson the stress tolerance of Pinus pinea L. seedlings. Tree Physiol. 33:221-232.
Pellet, H.M. and J.V. Carter. 1981. Effect of nutritional factors on cold hardiness of plants. Hortic. Rev. 3:144-171.
Peng, S.A. and S. Iwahori. 1994. Morphological and cytological changes in apical neristem during flower bud differentiation of Japanese pear, Pyrus pyrifolia Nakai. J. Jpn. Soc. Hort. Sci. 63(2):313-321.
Raese, J.T. 1997. Cold tolerance, yield, and fruit quality of ‘d''Anjou’ pears influenced by nitrogen fertilizer rates and time of application. J. Plant Nutr. 20:1007-1025.
Raese, J.T., R.D. Stephen, and E.A. Curry. 2007. Nitrogen fertilizer influences fruit quality, soil nutrients and cover crops, leaf color and nitrogen content, biennial bearing and cold hardiness of ‘Golden Delicious’. J. Plant Nutrition 30: 1585-1604.
Rohde, A., C. Bastien, and W. Boerjan. 2011. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol. 31:472-482.
Saure, M.C. 1985. Dormancy release in deciduous fruit trees. Hort. Rev. 7:239-289.
Schmitz, J.D., F.D. Herter, J.L. Regnard, G.B. Leite, and M. Bonhomme. 2015. Is acrotonic budburst pattern in spring a typical behavior of the low-chilling apple cultivar ‘Eva’ in mild winter conditions? An approach combining ex planta single-node cutting test and in planta bud water content during dormancy. Sci. Hort. 188:84-88.
Seo, H.J., J.Y. Ook, C.L.Lee, S.F. Roan, and I.Z. Chen. 2015. Effect of altitude on flower bud differentiation and necrosis in ''Shinko'' pears in subtropical climates. Kor. J. Hort. Sci. Technol. 33:18-23.
Tabuenca, M.C. 1964. Necesidades de frio invernal de variedades de albaricoquero, melocotonero y peral. An. Aula. Dei. 7:113-132.
Tanase, K. and S. Yamaki. 2000. Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant Cell Physiol. 41(4):408-414.
Tanino, K.K. 2004. The role of hormones in endodormancy induction. In: Bud dormancy in woody plants. Crop Improv. 10:157-199.
Tanino, K.K., L. Kalcsits, S. Silim, E. Kendall, and G.R. Gray. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol. Biol. 73:49-65.
Titus, J.S. and S.M. Kang. 1982. Nitrogen metabolism, translocation, and recycling in apple trees. Hortic. Rev. 4:204-246.
Vegis, A. 1964. Dormancy in higher plants. Annu. Rev. Plant Physiol. 15:185-224.
Wample, R.L., S.E. Spayd, R.G. Evans, and R.G. Stevens. 1993. Nitrogen fertilization of white riesling grapes in Washington: nitrogen seasonal effects on bud cold hardiness and carbohydrate reserves. Am. J. Enol. Vitic. 44(2):159-167.
Weiser, C.J. 1970. Cold resistance and injury in woody plants. Science 169:1269-1278.
Yamamoto, R.R., A. Katsumi-Horigane, M. Yoshida, Y. Sekozawa, S.Sugaya, and H. Gemma. 2010.“Floral primordia necrosis” incidence in mixed buds of Japanese pear (Pyrus pyrifolia (Burm.) Nakai var. culta) ‘Housui’ grown under mild winter conditions and the possible relation with water dynamics. J. Jpn. Soc. Hort. Sci. 79:246-257.
Yemm, E.W. and B.F. Folkes. 1958. The metabolism of amino acids and proteins in plants. Annu. Rev. Plant Physiol. 9:245-280.
Zion, B., A. Arbel, T. Halaly, R. Regev, M. Barak, G. Lidor, A. Weissblum, E. Harcabi, and E. Or. 2012. A heat-shock generator for dormancy release of grapevines in the vineyard. Trans. Am. Soc. Biol. Agric. Eng. 55(3):753-758.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top