跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林澤延
研究生(外文):Tse-Yen Lin
論文名稱:水楊酸及氯化鈣提升薰衣草及鼠尾草耐熱性之探討
論文名稱(外文):Alleviation of Heat Stress in Lavender and Sage by Salicylic acid and Calcium Chloride
指導教授:張育森張育森引用關係
指導教授(外文):Yu-Sen Chang
口試委員:張祖亮黃文達洪進雄
口試委員(外文):Tsu-liang ChangWen-Dar HwangChin-Hsiung Hung
口試日期:2016-01-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:145
中文關鍵詞:薰衣草鼠尾草水楊酸氯化鈣耐熱性
外文關鍵詞:LavenderSageSalicylic acidCalcium ChlorideHeat Stress
相關次數:
  • 被引用被引用:3
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
香草植物(herbs)可作精油、藥用、芳香、烹調、飲用等用途,兼具觀賞與實用價值。近幾年於台北花市盆花交易品銷售量均維持前十名內,其中薰衣草(Lavandula spp.)與鼠尾草(Salvia officinalis)為市面上常見之香草種類。因多原生於歐、美、日等溫帶國家,故多數難以適應台灣高溫、高濕的氣候。本研究擬先探討紅外線熱像儀及葉片相對傷害值篩選台灣市面上常見之六種薰衣草如齒葉薰衣草(L. dentate)、羽葉薰衣草(L. pinnata)、普羅旺斯薰衣草(L. x intermetia ‘Provence’)、法國薰衣草(L. stoechas)、狹葉薰衣草(L. angustifolia)與甜薰衣草(L. x heterophylla)及五種鼠尾草如巴格旦鼠尾草(S. officinalis ‘Bergarrten’)、鳳梨鼠尾草(S. elegans ‘Scarlet Pineapple’)、原生鼠尾草(S. officinalis)、水果鼠尾草(S. dorisiana)和墨西哥鼠尾草(S. leucantha)耐熱性。其次探討單一及複合藥劑對提高薰衣草與鼠尾草高溫耐受性之影響。
以紅外線熱像儀及葉片相對傷害值篩選可將耐熱性區分(1)最耐熱者為甜薰衣草、羽葉薰衣草;墨西哥鼠尾草、鳳梨鼠尾草。(2)中度耐熱者為普羅旺斯薰衣草、齒葉薰衣草、法國薰衣草;原生鼠尾草、巴格旦鼠尾草。(3)不耐熱者為狹葉薰衣草;水果鼠尾草。將植株種植在半露天環境中依照觀賞品質可將耐熱性分為(1)最耐熱者為齒葉薰衣草、羽葉薰衣草;墨西哥鼠尾草、鳳梨鼠尾草。(2)中度耐熱者為普羅旺斯薰衣草、甜薰衣草、法國薰衣草;水果鼠尾草。(3)不耐熱者為狹葉薰衣草;原生鼠尾草、巴格旦鼠尾草。
施用單一藥劑提升薰衣草與鼠尾草高溫耐受性方面,本研究利用55℃持續加熱30分鐘為篩選各品種薰衣草及鼠尾草耐熱程度,並施用不同濃度水楊酸 (0、100、200、400、800 μM)及不同濃度氯化鈣(0、5、10、15 mM)。水楊酸施用最佳濃度為澆灌100μΜ可提升狹葉薰衣草、法國薰衣草、羽葉薰衣草、齒葉薰衣草;巴格旦鼠尾草、鳳梨鼠尾草、原生鼠尾草、水果鼠尾草、墨西哥鼠尾草耐熱性。澆灌200 μΜ水楊酸可提升甜薰衣草、普羅旺斯薰衣草耐熱性;氯化鈣施用濃度為甜薰衣草以5 mM最佳;鳳梨鼠尾草以5 mM最佳,原生鼠尾草以15 mM最佳,可有效抵抗高溫逆境之傷害,其外觀品質較好且枯萎程度較少。
施用複合藥劑提升薰衣草與鼠尾草高溫耐受性方面,55℃持續加熱30分鐘之高溫逆境前兩小時,將甜薰衣草、鳳梨鼠尾草及原生鼠尾草分別澆灌水楊酸、氯化鈣、水楊酸與氯化鈣之複合藥劑。其中複合藥劑提升植物耐熱性優於其他處理組,證實水楊酸與氯化鈣混合使用具有互相促進之效應,且可達到節省成本之效益。


Herbs and the essential oils are of both ornamental and practical value having medicinal, aromatic, culinary and other properties. In recent years, sales of herb plants have remained in the top ten in the potted flower market in Taipei where lavender (Lavandula spp.) and sage (Salvia officinalis) are among the popular kinds of herb. Many herbs that have been introduced from Europe, America, Japan and other temperate regions have a hard time adapting to the high temperatures and high humidity in Taiwan. The purpose of this study was to investigate the heat tolerance in some common-market varieties of lavender and sage with the infrared thermal imager and values of leaf relative injury. Six lavender varieties L. dentate, L. pinnata, L. x intermetia ‘Provence’, L. stoechas, L. angustifolia and L. x heterophylla and five sage varieties S. officinalis ‘Bergarrten’, S. elegans ‘Scarlet Pineapple’, S. officinalis, S. dorisiana and S. leucantha were included in the study. Secondly, the impact of using single and composite chemicals on lavender and sage to increase the tolerance for high temperatures was investigated.
Infrared thermal imager and leaf relative injury values were used to classify the herbs into (1) Most heat tolerance – L. x heterophylla, L. pinnata; S. leucantha, S. elegans ‘Scarlet Pineapple’. (2) Moderately heat tolerance – of L. x intermetia ‘Provence’, L. dentate, L. stoechas; S. officinalis, S. officinalis ‘Bergarrten’. (3) Not heat tolerance – L. angustifolia; S. dorisiana.
Heat tolerance of the herbs grown in semi-outdoor environment in terms of ornamental quality can be divided into (1) Most heat resistant – L. dentate, L. pinnata; S. leucantha, S. elegans ‘Scarlet Pineapple’. (2) Moderately heat resistant – L. x intermetia Provence, L. x heterophylla, L. stoechas; S. dorisiana. (3) Not heat resistant – L. angustifolia; S. officinalis, S. officinalis ‘Bergarrten’.
For the administration of single chemical agent on lavender and sage to enhance the tolerance for high temperatures, different concentrations of salicylic acid (0,100,200, 400,800 μM) and calcium chloride (0,5,10,15 mM) were treated on lavender and sage before subjecting the plants to 55 ℃ continuous heat for 30 minutes to determine the heat tolerance of different varieties.
The optimum concentration of salicylic acid administered to improve heat tolerance was 100μΜ for L. angustifolia, L. stoechas, L. pinnata, L. dentate; S. officinalis ‘Bergarrten’, S. elegans ‘Scarlet Pineapple’, S. officinalis, S. dorisiana, and S. leucantha. Applying 200 μΜ of salicylic acid enhanced the heat tolerance of sweet lavender, and Provence lavender. The optimum level of calcium chloride for enhancing heat tolerance was 5 mM for sweet lavender and S. Elegans scarlet Pineapple while 15mM was required for S. officinalis to achieve better ornamental quality and sustain reduced injuries under high temperature stress.
For the administration of composite chemical agents on lavender and sage to enhance the tolerance for high temperatures, treatments of salicylic acid, calcium chloride, salicylic acid and calcium chloride complex agent were given to sweet lavender, sage and pineapple sage two hours before exposing the plants to high temperature stress of 55 ℃ continuous heat for 30 minutes. The result showed that composite chemicals had effectively enhanced heat tolerance more than other treatments of single chemical suggesting the cumulative benefit and cost savings that can be achieved from using a combination of salicylic acid and calcium chloride.


目錄................................................... ii
表目錄 ............................................... iv
圖目錄................................................ v
摘要.................................................. x
Abstract ............................................. xii
第一章 前言 ............................................ 1
第二章 前人研究 ........................................ 3
第三章 薰衣草與鼠尾草耐熱品種篩選........................ 13
一、前言(Introduction)..................................14
二、材料與方法(Materials and Methods)...................15
試驗一、以紅外線熱像儀篩選薰衣草與鼠尾草耐熱品種 .......... 15
試驗二、以葉片相對傷害值篩選薰衣草與鼠尾草耐熱品種 .........16
試驗三、6個品種薰衣草與5個品種鼠尾草於高溫高濕下種植之反應.. 18
三、結果(Result) .......................................20
四、討論(Disscussion) ..................................23
五、結論(Conclusion) ...................................26
第四章 外施水楊酸提升薰衣草與鼠尾草耐熱性之應用............ 47
一、前言(Introduction) ................................ 48
二、材料與方法(Materials and Methods) ................. 49
試驗一、水楊酸施用濃度對薰衣草及鼠尾草耐熱性之影響..........49
試驗二、薰衣草及鼠尾草於高溫高濕下施用SA之生長與生理反應.....52
三、結果(Result) ...................................... 56
四、討論(Disscussion) ................................. 61
五、結論(Conclusion) .................................. 64
第五章 外施氯化鈣提升薰衣草與鼠尾草耐熱性之應用............103
一、前言(Introduction) ............................... 104
二、材料與方法(Materials and Methods) .................105
試驗一、氯化鈣施用濃度對薰衣草及鼠尾草耐熱性之影響.........105
三、結果(Results) .....................................108
四、討論(Disscussion) .................................109
五、結論(Conclusion) ................................. 110
第六章 外施複合藥劑提升薰衣草與鼠尾草耐熱性之應用..........119
一、前言(Introduction) ................................120
二、材料與方法(Materials and Methods) .................121
試驗一、複合藥劑施用對薰衣草耐熱性之影響..................121
試驗二、複合藥劑施用對鼠尾草耐熱性之影響..................124
三、結果(Results) .....................................125
四、討論(Disscussion) .................................126
五、結論(Conclusion) ..................................127
第七章 結論............................................135
參考文獻(References) ................................. 136
附錄(Appendix) .......................................145

尹玲莉、侯曉傑. 2007. 植物抗性訊號分子—水楊酸研究進展. 中國農學通報
23:338-342.
王利軍、戰吉成、黃衛東. 2002. 葡萄幼苗高溫鍛煉過程中與水楊酸相關的信號轉導的初步研究. 植物學通報 19:710-715.
王利軍、李家承、劉允芬、劉琪瑾、黃衛東、石玉林. 2003. 高溫乾旱脅迫下水楊酸和鈣對柑橘光合作用和葉綠素螢光的影響. 中國農學通報 19(6):185-189.
王進學. 2005. 以膜熱穩定性技術評估菊花開花之熱延遲. 國立台灣大學園藝學研究所碩士論文. 臺北.
王進學、葉德銘. 2013. 菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生
苗. 臺灣園藝. 59:153-166.
李天来、李淼、孫周平. 2009. 钙和水楊酸对亞高温脅迫下番茄葉片保護酶活性的調控作用. 應用生態學報 20:586-590.
李永紅、魏玉香、穀茂. 2008. 水楊酸預處理對雞冠花幼苗熱脅迫的生理效應. 西北植物 28:2257-2262.
李秀美、劉新裕、林俊義. 2005. 香草植物與芳香療法. 農業試驗所特刊. 112:74-79.
宋嘉賢. 2014. 2014年6月盆花商情報. 臺北.
林鈴娜. 2011. 水楊酸對提升花卉作物溫度逆境耐受性之研究. 國立國立臺灣大學生物資源暨農學院園藝學系博士論文. 臺北.
林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 國立國立臺灣大學園藝學研究所碩士論文. 臺北.
吳承叡. 2015. 環保高品質聖誕紅盆花生產體系之建立. 國立國立臺灣大學園藝學研究所碩士論文. 臺北.
康喜亮、郁松林、胡偉、詹妍妮、陳培琴、王延書. 2005. SA 與高溫鍛煉對高溫逆境下葡萄幼苗葉片鈣離子水準的影響. 石河子大學學報 23:482-486.
唐海峰、樊萬選. 2009. 應對全球氣候變暖 創新農業開發理念. 世界農業 4:1-3.
陳子婷. 2007. 光週、低溫貯藏與激勃素對薰衣草生長與開花之影響. 國立臺灣大學園藝學研究所學位論文. 臺北.
陳怡如譯. 2002. 芳香藥草園藝圖鑑. 貓頭鷹出版社. 臺北.
陳明昌、黃雅玲. 2003. 香草植物之蒐集與利用. 高雄區農業專訊. 38:4-15.
陳秋明、尹慧、李曉豔、義鳴放. 2008. 高溫脅迫下外源水楊酸對百合抗氧化系統的影響. 中國農業大學學報. 13:44-48.
陳葦玲、郭孚燿、陳榮五. 2009. 利用細胞膜熱穩定性技術篩選高耐熱性葉用蘿蔔. 臺中區農業改良場研究彙報 . 102期:15 – 29.
陳葦玲. 2013.作物耐熱性篩選指標之建立. 臺中區農業改良場特刊. 116:P217 – 220.
陳錦木. 1996. 溫度、季節與海拔對菊花生長及開花品質之影響. 國立國立臺灣大學園藝學研究所碩士論文.
張元聰、王仕賢. 2002. 香草產業的現況及未來產業方向(下). 台灣花卉園藝 174:42-47.
張元聰、王仕賢、王裕權. 2002. 西洋香草介紹(十二)-薰衣草. 農業世界 232:111-118.
張凱淳. 2013. 水楊酸複合藥劑促進非洲鳳仙與四季秋海棠耐熱性之研究. 國立國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北.
黃文達. 2015. 香草植物就要這樣玩:栽培×手作×料理. 晨星出版有限公司. 臺中.
劉忠國、曹辰興、王濤、季春梅、陳玉茶. 2010. 水楊酸與氯化鈣單一及複配誘導對黃瓜幼苗耐熱性的影響. 山東農業科學 4:27-30.
劉悅萍、宮飛、趙曉萌. 2005. 水楊酸介導的信號轉導途徑與植物抗逆性. 中國農學通報 21:227-229.
蔡月夏. 2004. 薰衣草栽培與利用. 花蓮區農業專訊. 49: 11-14.
蔡幸君. 2002. 台灣薰衣草疫病. 植物病理學會刊11: 229-232.
Ahren, M.J. and D.L. Ingram. 1988. Heat tolerance of citrus leaf. HortScience 23:747-748.
Apostolova, E. L. and A. G. Dobrikova. 2011. Effect of high temperature and UV-A radiation on photosystem II, p.57-591. In: M. Pessarakli (eds.). Handbook of plant and crop stress. 3ed. CRC Press, Boca Raton. USA.
Ashraf, M., Hafeez, M., 2004. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia plantarum. 48:81-86.
Bajguz, A. and S. Hayat. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47:1-8.
Blokhina, O., E. Virolainen, and K.V. Fagerstedt. 2003. Antio×idants, o×idative damage and o×ygen deprivation stress: a review. Ann. Bot. 91:179.
Bowler, C., M. V. Montagu and D. Inze. 1992. Supero×ide dismutase and stress tolerance. Annual review of plant biology. 43:83-116.
Bremness, L. 1996. Herbs. Dorling Kindersley Limited, London. Chouard, P. 1960. Vernalization and its relations to dormancy. Ann. Rev. Plant physiol. 11:191-238.
Camejo, D., Rodr´ıguez, P., Morales, M.A., Dell’amico, J.M., Torrecillas, A.,Alarcon, J.J., 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281–289.
Chen, H.H., Z.Y. Shen, and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725.
Criley, R.A. 1989. Culture and cultivars selection for anthurium in Hawaii. Acta Hort. 246:227-236.
Dat, J.F., C.H. Foyer, and I.M. Scott. 1998a. Changes in salicylic acid and antio×idants during induced thermotolerance in mustard seedlings. Plant Physiol. 118:1455-1461.
Durrant, W.E., and ×. Dong. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185–209.
Erickson, A.F. and A.H. Markhart. 2001. Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J. Amer. Soc. Hort. Sci. 126:697-702.
Farooq, M., T. Aziz, S.M.A. Basra, M.A. Cheema, and H. Rehman. 2008. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agr. Crop Sci. 194:161-168.
Gong, M., S. N. Chen, Y. Q. Song, and Z. G. Li. 1997. Effect of calcium and calmodulin on ontrinsic heat tolerance in relation to antio×idant systems in maize seedlings. Functional Plant Biol. 24:371-379.
Hackl, H., J. P. Baresel, B. Mistele, Y. Hu and U. Schmidhalter. 2012. A comparison of plant temperatures as measured by thermal imaging and infrared thermometry. J. Agronomy & Crop Sci. 198:415-29.
Hartl F.U., A. Bracher, M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475: 324-332.
Hayat, S., and A. Ahmad. 2007. Salicylic acid: a plant hormone. Springer Verlag. p.91-150.
Hayat, S., B. Alt, and A. Ahmad. 2007. Salicylic acid: biosynthesis, metabolism and physiological role in plants. Salicylic acid: a plant hormone. Springer Verlag. p.1-14.
Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid pero×idation. Archives of biochemistry and biophysics 125. 1: 189-198.
Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768.
Janda, T., G. Szalai, I. Tari, and E. Paldi. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 208:175-180.
Kaur, P., N. Ghai, and M.K. Sangha. 2009. Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African J. Biotechnol. 8:619-625.
Klessig, D.F., and J. Malamy. 1994. The salicylic acid signal in plants. Plant Molecular Biol. 26:1439-1458.
Koga H., S. Kaushik, A.M. Cuervo .2011. Protein homeostasis and aging: The importance of e×quisite quality control. Ageing Res Rev 10: 205-215.
Kyalo, T.M. and H.B. Pemberton. 1996. Seasonal growing environment affects quality characteristics and postproduction longevity of potted miniature roses. HortScience. 31:120-122.
Larkindale, J., and B. Huang. 2004. Thermotolerance and antio×idant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen pero×ide, and ethylene. Journal of plant physiology, 161(4), 405-413.
Lester, G.E. 1985. Leaf cell membrane thermostabilities of Cucumis melo. J. Amer. Soc. Hort. Sci. 110:506-509.
Martineau, J. R., J. E. Specht, J. H. Williams, and C. Y. Sullivan. 1979. Temperature tolerance in soybeans I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
McNaughton, V. 2000. Lavender-the grower’s guide. Timber Press, Ore.
Merlot, S., M. Anna-Chiara, G. Bernard, N. Helen, L. Valerie, S. Bruno, V. Alain and G. Jerome. 2002. Use of infrared thermal imaging to isolate arabidopsis mutants defective in stomatal regulation. Plant J. 30(4):601-609.
Onwueme, I. C. 1979. Rapid plant-conserving estimation of heat tolerance in plants. J. Agr. Sci. Camb. 92:527-536.
Pan, Q., J. Zhan, H. Liu, J. Zhang, J. Chen, P. Wen, and W. Huang. 2006. Salicylic acid synthesized by benzoic acid 2-hydro×ylase participates in the development of thermotolerance in pea plants. Plant Sci.171:226-233.
Peet, M.M. and M. Bartholemew. 1996. Effect of night temperature on pollen characteristics, growth, and fruit set in tomato. J. Amer. Soc. Hort. Sci. 121:514-519.
Putnam, M. L. 1988. Lavandula angustifolia, a new host for Phytophthora parasitica. Phytopathology 78:1614.
Putnam, M. 1991. Root rot of lavender caused by Phytophthora nicotianae. Plant Pathology 40:480-482.
Rainey, K.M. and P.D. Griffiths. 2005. Differential response of common bean genotypes to high temperature. J. Amer. Soc. Hort. Sci. 130:18-23.
Raskin, I., A. Ehmann, W.R. Melander, and B.J.D. Meeuse. 1987. Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601-1602.
Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Biol. 43:439-463.
Richter K., M. Haslbeck, and J. Buchner. 2010. The heat shock response: life on the verge of death. Mol Cell 40: 253-266.
Rivero, R.M., J.M. Ruiz, P.C. Garcia, L.R. Lopez-Lefebre, E. Sanchez, and L. Romero. 2002. Response of oxidative metabolism in watermelon plants subjected to cold stress. Functional Plant Biol. 29:643-648.
Saadalla, M.M., J.S. Quick, and J.F. Shanahan. 1990b. Heat tolerance in winter wheat: II. Membrane thermostability and field performance. Crop Sci. 30:1248-1251.
Sakhabutdinova, A.R., D.R. Fatkhutdinova, and F.M. Shakirova. 2004. Effect of salicylic acid on the activity of antio×idant enzymes in wheat under conditions of salination. Appl. Biochem. Microbiol. 40:501-505.
Shi, Q. Z. Bao, Z. Zhu, Q. Ying, and Qiongqiu Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antio×idant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulat. 48:127–135.
Singh, B., and K. Usha. 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulat. 39:137-141.
Sriniasan, A., H. Takeda, and T. Senboku. 1996. Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88:35-45.
Srivastava, M.K. and U.N. Dwivedi. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. (Limerick) 158:87-96.
Sung, D. Y., F. Kaplan, K. J. Lee and C. L. Guy. 2003. Acquired tolerance to temperature e×tremes. Trends in plant science, 8(4):179-187.
Suzuki, K., T. Tsukaguchi, H. Takeda, and Y. Egawa. 2001. Decrease of pollen stainability of green bean at high temperature and relationship to heat tolerance. J. Amer. Soc. Hort. Sci. 126:571-574.
Tan, W., Q. W. Meng, M. Brestic, K. Olsovska, and ×. Yang. 2011. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plant, J. Plant Physiol. 168:2063-2071.
Upson, T., and S. Andrews. 2004. The genus Lavandula. Timber Press. Londron.
van Zanten, M., T. Ritsema, J. K. Polko, A. Leon-Reyes, L. A.Voesenek , F. F.Millenaar, C. M. Pieterse and A. J. Peeters . 2012. Modulation of ethylene-and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. Planta, 235(4), 677-685.
Vasyukova, N.I., and O.L. Ozeretskovskaya. 2007. Induced plant resistance and salicylic acid: A review. Appl. Biochem. Microbiol. 43:367-373.
Wahid, A., 2007. Physiological implications of metabolites biosynthesis in net.
Wang, L.J., and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170:685-694.
Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754-759.
Willits, D.H. and M.M. Peet. 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci. 126(2):188-194.
Warner, R.M. and J.E. Erwin. 2001. Variation in floral induction requirements of Hibiscus sp. J. Amer. Soc. Hort. Sci. 126:262-268.
Wu, M. T., and S. J. Wallner, 1984. Heat stress responses in cultured plant cells heat tolerance induced by heat shock versus elevated growing temperature. Plant physiology, 75(3), 778-780.
Xu. Qiang, X. Xin, Z. Yan, J. Kum, J. H. Stephen and H. Lin. 2008. Salicylic acid, hydrogen peroxide and calcium induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul. 54:249-259.
Yamane, T., Y. kashino, H. Koike, and K. Satoh. 1997. Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature in higher plants. Photosyn. Res. 52: 57-64.
Yan, C. L., J. B. Wang and R. Q. Li. 2002. Effect of heat stress on calcium ultrastructural distribution in pepper anther. Environmental and e×perimental botany, 48(2), 161-168.
Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128(5), 656-660.
Yeh, D.M. and P.Y. Hsu. 2004. Heat tolerance in English ivy as measured by an electrolyte leakage technique. J. Hort. Sci. Biotechnol. 79:298–302.
Zhang, J. H., W. D.H. Uang, Y. P. Liu and Q. H. PAN. 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jing×iu) under cross‐temperature stresses. Journal of Integrative Plant Biology, 47(8), 959-970.
Zhao, H. J. and J. F. Tan. 2005. Role of calcium ion in protection against heat and high irradiance stress-induced o×idative damage to photosynthesis of wheat leaves. Photosynthetica 43:473-476.
Zhao, P., P. Jones, L. Cao, Z. Yan, S. Zha, Y. Zhu, Y. Yu and G.Tang. 2014. Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. Journal of Climate, 27(12):4693-4703.
Ziska, L.H. and P.A. Manalo. 1996. Increasing night temperature can reduce seed set and potential yield of tropical rice. Aust. J. Plant Physiol. 23:791-794.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top