|
1.Paul S. Masters, S.P., Coronaviridae. Fields'' virology 6th Edition, 2013. volume 1: p. 825-858. 2.de Wit, E., et al., SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Micro, 2016. 14(8): p. 523-534. 3.ICTV, Order: Nidovirales., 2012. 4.van Boheemen, S., et al., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 2012. 3(6). 5.Bredenbeek, P.J., et al., The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res, 1990. 18(7): p. 1825-32. 6.Pasternak, A.O., W.J. Spaan, and E.J. Snijder, Nidovirus transcription: how to make sense...? J Gen Virol, 2006. 87(Pt 6): p. 1403-21. 7.Lai, M.M., C.D. Patton, and S.A. Stohlman, Further characterization of mRNA''s of mouse hepatitis virus: presence of common 5''-end nucleotides. J Virol, 1982. 41(2): p. 557-65. 8.Lai, M.M., et al., Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3. J Virol, 1981. 39(3): p. 823-34. 9.Williams, R.K., G.S. Jiang, and K.V. Holmes, Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5533-6. 10.Dveksler, G.S., et al., Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol, 1991. 65(12): p. 6881-91. 11.Graham, R.L., E.F. Donaldson, and R.S. Baric, A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 2013. 11(12): p. 836-48. 12.Kuhn, J.H., et al., Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci, 2004. 61(21): p. 2738-43. 13.Snijder, E.J., et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 2003. 331(5): p. 991-1004. 14.Knoops, K., et al., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol, 2008. 6(9): p. e226. 15.van Hemert, M.J., et al., The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor. J Biol Chem, 2008. 283(24): p. 16525-36. 16.Zuniga, S., et al., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol, 2004. 78(2): p. 980-94. 17.Jeong, Y.S. and S. Makino, Evidence for coronavirus discontinuous transcription. J Virol, 1994. 68(4): p. 2615-23. 18.Liu, P., et al., A U-turn motif-containing stem-loop in the coronavirus 5'' untranslated region plays a functional role in replication. Rna, 2007. 13(5): p. 763-80. 19.Li, L., et al., Structural lability in stem-loop 1 drives a 5'' UTR-3'' UTR interaction in coronavirus replication. J Mol Biol, 2008. 377(3): p. 790-803. 20.Moreno, J.L., et al., Identification of a coronavirus transcription enhancer. J Virol, 2008. 82(8): p. 3882-93. 21.Mateos-Gomez, P.A., et al., Long-distance RNA-RNA interactions in the coronavirus genome form high-order structures promoting discontinuous RNA synthesis during transcription. J Virol, 2013. 87(1): p. 177-86. 22.van Marle, G., et al., Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. J Virol, 1999. 73(7): p. 5274-81. 23.Lehmann, K.C., et al., What we know but do not understand about nidovirus helicases. Virus Res, 2015. 202: p. 12-32. 24.Wu, C.H., et al., Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J Biol Chem, 2009. 284(8): p. 5229-39. 25.Wu, C.H., P.J. Chen, and S.H. Yeh, Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe, 2014. 16(4): p. 462-72. 26.Spencer, K.A. and J.A. Hiscox, Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region. FEBS Lett, 2006. 580(25): p. 5993-8. 27.Zuniga, S., et al., Coronavirus nucleocapsid protein is an RNA chaperone. Virology, 2007. 357(2): p. 215-27. 28.Grossoehme, N.E., et al., Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol, 2009. 394(3): p. 544-57. 29.Parker, M.M. and P.S. Masters, Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 1990. 179(1): p. 463-8. 30.Calvo, E., et al., Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J Gen Virol, 2005. 86(Pt 8): p. 2255-67. 31.T. C. White, Z.Y., and B. G, Hogue, Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res, 2007. vol. 126: p. 139-48. 32.J. S. Liang Lin, M.S., Jinxiu Liu, Gongjin Xu, Xumin Zhang, Ningzhi Xu, Rong Wang, Siqi Liu, Identification of phosphorylation site in the nucleocapsid protein (N protein) of sars-coronavirus. International Journal of Mass Spectrometry, 2007. vol. 268: p. 8. 33.Jarmoskaite, I. and R. Russell, DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA, 2011. 2(1): p. 135-52. 34.Rossler, O.G., A. Straka, and H. Stahl, Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res, 2001. 29(10): p. 2088-96. 35.Rogers, G.W., Jr., W.F. Lima, and W.C. Merrick, Further characterization of the helicase activity of eIF4A. Substrate specificity. J Biol Chem, 2001. 276(16): p. 12598-608. 36.Kim, Y.N. and S. Makino, Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J Virol, 1995. 69(8): p. 4963-71. 37.Spaan, D.A.B.a.W.J.M., Recombination and Coronavirus Defective Interfering RNAs. Virology, 1997. 8: p. 101-111. 38.Makino, S., M. Joo, and J.K. Makino, A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol, 1991. 65(11): p. 6031-41. 39.Lai, M.M., et al., Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc Natl Acad Sci U S A, 1984. 81(12): p. 3626-30.
|